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1. INTRODUCTION 

Particles in two spatial dimensions with fractional statistics known, generi- 
cally, as anyons, have been of interest to particle physicists for nearly ten years. 

A major change in the direction of research occurred when it was discovered that 

anyons could play a role as quasiparticles in condensed matter systems. This was 

originally discovered to be the case in systems exhibiting the Fractional Quantum 

Hall Effect!” The application of anyons to condensed matter systems received yet 

another boost when it was discovered by Laughlin”-” that even an ideal gas of 
anyons was a superfluid and, as a result, a gas of charged anyons would be a super- 
conductor. This led immediately to attempts[‘-‘l’ to explain the superconductivity 

of high Tc materials which are layered ceramics in terms of anyons. The main chal- 

lenge was to find a reasonable model for these materials which had quasiparticles 
obeying anyonic statistics. The goal of this article is to review the theory of anyonic 
superconductivity and its possible relation to high Z’, materials. The emphasis in 
this review is on field theoretical methods. 

We begin in chapter 2 by explaining what an anyon is and how it can be mod- 

eled mathematicalIy. In chapter 3 we discuss the possible relationship between 

anyons and high Z’= materials. We review several of the attempts to obtain any- 
onic quasiparticles from the Hubbard model which is commonly used to describe 
these materials. This discussion is rather brief since a comprehensive review by 
Balachandran et ali”’ is already available. 

Chapter 4 describes the mathematical modeling of anyons in terms of their 

interaction with an abelian gauge field with a Chern-Simons term. This descrip- 
tion of anyons is used extensively in this article. In chapter 5 we begin considering 
an ideal gas of anyons. We discuss how to determine whether this system is a 

superfluid (or, if charged, a superconductor). In other words we discuss the pos- 
sible criteria for superconductivity in anyonic systems with particular emphasis 
on criteria which would be useful in the Chern-Simons description. In chapter 6 
we demonstrate that a neutral gas of anyons has a massless “Goldstone” mode. 
A detailed discussion of a field theoretic method[“l is presented as well as a brief 

description of the RPA[‘“‘and “inhomogeneous expansion”““derivations. Chapter 

7 contains a discussion of a physical picture of anyonic superconductivity. Sponta- 

neous breaking of an algebra’“‘“-“’ is also addressed. 

In chapter 8 we present the proof of a nonrenormalization theorem which shows 

that the results of chapter 6 are valid to all orders in a perturbative expansion about 
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mean field theory. An attempt to address the non-perturbative renormalization WI 

is brieily described. The finite temperature analysis is discussed in chapter 9. 

In chapter 10 we present the details of the low energy Landau-Ginsburg effec- 

tive action for anyonic superconductors. This effective action is directly relevant to 

experimental tests of the model. The experimental tests are also briefly discussed. 

We conclude with a summary in chapter 11. 

2. ANYONS 

Anyonsis the name given by Wilczek”” to denote particles exhibiting fractional 
statistics in quantum mechanical systems with 2+1 spacetime dimensions. The first 
general description of anyons was given by Leinaas and Myrheimy’ Goldin et sly’ 

and Wilczek!“’ We wilI not attempt here to review alI of the subsequent literature 
which has grown up concerning fractional statistics; instead, this section describes 
the basic concepts essential to an understanding of anyon superconductivity. Read- 
ers desiring a more detailed description of anyon fundamentals should consult the 
recent book by Wilczek, WI “I’ the review by Stone, or the original literature. 

The possibility of fractional statistics occurs in a quantum mechanical system 
when the space of periodic trajectories is not simply or doubly connected. This 
occurs when the configuration space has non-contractable loops. A very simple 
example is a system of two particles in d+l dimensions with hard-core repulsion. 
The relative configuration space is lid with the point x=x1-x2=0 removed. This 
configuration space has non-contractable loops for d=2. For a system of two 
identical hard-cores in d+l dimensions, the configuration space is (&-{O))/Sr, 
where Sr is the permutation group of 2 objects. This configuration space (which is 
equivalent to a circular cone’“‘) h as non-contractable loops for any d. Specifically, 
a trajectory representing the physical interchange of the two particles cannot be 

continuously deformed into a trajectory where nothing happens. For d>2, that is 

the end of story: there are only two equivalence classes of trajectories, so the space 

is doubly-connected. However for d=2, trajectories representing n interchanges are 

topologicalIy inequivalent to trajectories with m interchanges, for all n#m. Thus, 
for d=2, the space of periodic histories is infinitely-connected. 

To quantize such systems one needs to specify a prescription for combining 
the disconnected parts. General arguments[‘3-Jd’ indicate that prescriptions with 

consistent composition rules are representations of the fundamental group III(M) 

of the configuration space M. In the example we are discussing, III(M)=& for 
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d>2. From the two one-dimensional representations of Sr, representing relative 

phases $1 or -1 between the two equivalence classes, we obtain ordinary bose or 

fermi statistics. For d>2 fractional statistics can only be obtained by choosing 

higher-dimensional representations of the fundamental group, which implies ad- 

ditional “internal” degrees of freedom. This route to fractional statistics, called 

parastatistics, has nothing to do with anyons. Anyons arise in the case d=2, for 

which lIr(M)=&, the hid IJPOU~ of two objects. Bz has an infinite number of dis- 

tinct one-dimensional representations, which can be parametrized by a continuous 
“statistics” parameter 7, defined module 2x. For 7=0 and rr, we again obtain a 
system of (hard-core) bosons or fermions, but for other values we have a quantum 
system of particles with fractional statistics, i.e. anyons. 

Anyons obey a generalization of the usual spin-statistics connection[“J’J”: a 
statistical phase exp(i7) implies spin 7/2x. In 3+1 dimensions, of course, the uni- 
tary representations of the rotation group restrict angular momentum to integer 
or half-integer values. For the 2+1 dimensional case, however, the rotation group 
SO(2) admits unitary representations with continuous values of angular momen- 
tum. Thus there is no inconsistency in anyons with fractional spin. 

Anyons have a precise analog, called cyons, which exist in 3+1 dimensions 
““” and make the properties of anyons much more intuitive. A cyan is a charged, 

infinitely thin, infinitely long solenoid. When one cyan winds by an angle up around 

another, an Aharonov-Bohm phase is induced in the wavefunction: 

(2.1) 

where q is the charge (measured in units of e) and ip is the flux (measured in 

units of he/e) carried by each cyan. The extra factor of two is present since the 

phase occurs in the combined wave function of the two cyons and since we have two 

charges moving relative to two flux tubes. Thus (provided the flux is not quantized 

precisely in units of l/q) these Aharonov-Bohm phases can simulate fractional 

statistics. In addition, the field contributions to the total angular momentum can 

simulate fractional spin!‘O’ Indeed if we replace (by hand) the Coloumb interaction 

between cyons by hard-core repulsion, and confine our observations to a planar 

slice, then cyons are anyons. There is clearly much to be gained by thinking 
about the strange properties of anyons in the familiar language of abelian gauge 
interactions. 
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One should keep in mind that cyons have nothing to do with charges and 
solenoids in the real world. For any real solenoid there is a return flux, whose 
effects precisely cancel the apparent fractional angular momentum and phases. 
Put another way, fractional statistics requires non-contractable loops, which arise 
because the idealized flux tubes of cyons are line singularities in coordinate space. 
These can not be obtained as a limit of finite solenoids. 

It is convenient to distinguish the charge and flux carried by cyons from real 
electromagnetic charges and fluxes. We wilI denote these as “statistics” or “fit- 
titious” charge and flux, to emphasize that they are artificial constructs intro- 
duced simply to mock up the fractional statistics of anyons. One can consider 
cyon/anyons which carry both a statistics charge and a real electromagnetic charge. 

Such charged anyons are responsible, in fact, for anyon superconductivity. To avoid 
confusion in this case we will use a* to denote the statistics vector potential, and 
A,, to denote the electromagnetic potential. It is convenient, however, to measure 

both statistics and electromagnetic charge in the same units e. 

With a symmetric gauge choice, the fictitious gauge potential associated with 
an anyon with unit statistical charge and with statistical flux 7 located at the 

origin can be written HI : 

7 h.=. 7 ttcl- 
a(r) = g-t x 5 = G--ye (2.2) 

where 0 is the azimuthal angle. (In this review we shall often use units in which 

,+L=c=I.) Note that a(r) is the gauge potential due to a magnetic flux of strength 

7/e located precisely at the origin. Thus to each anyon, we can assign a magnetic 
flux of strength 7/e. The many-anyon generalization of this is: 

a(ri) = zFC’Vi@ij 
1 

where Bij=tan-‘((yj - yi)/(rj - ni)) is th e relative angle between i and j, and 
the primed sum indicates that j=i is excluded. From this one can write down a 

many-body hamiltonian for a gas of free anyons with statistics parameter 7 and 

mass m: 

a(7) = C & (Pi - :a(ri))” 
i 

Although this hamiltonian represents free anyons, there is an effective long- 
range (nonlocal) interaction due to fractional statistics. The free anyon gas is, 
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effectively, a highly nontrivial dynamical system. Of course, we can eliminate 
the azimuthal statistics vector potential by a (singular) gauge transformation?’ 
However in this gauge, called anyon gauge, the wavefunctions will not be single- 

valued. 

An important feature of anyon systems is that they generically violate parity 

and time-reversal invariance. This is because the effect of either a P or 2’ trans- 

formation is to flip the sign of the relative angle between two anyon trajectories. 

Thus a system of anyons with statistics parameter 7 is transformed into a system 

with statistics -7, which is inequivalent except in the cases 7=0 or x. This has the 
immediate and important phenomenological implication that anyon superconduc- 

tivity, if it exists, is linked to spontaneous P and T breaking!” It should be noted, 

however, that it is possible to avoid this link in a system with “mirror” anyons?’ 

As we have seen, anyons can exist as fundamental particles only in 2+1 space- 

time dimensions. In addition, though, there is nothing to prevent anyons from 
existing as quasiparticles in quasi-planar condensed matter systems. In fact, there 

is considerable experimental evidence for the existence of anyonic quasiparticles in 
Fractional Quantum Hall heterojunctions!“-“’ It is the existence of anyon quasi- 
particles in real systems that makes anyonic superconductivity an exciting field, 
and not merely a dry exercise in mathematical physics. To some extent anyon 
superconductivity is best studied in a particular condensed matter context, such 
as variants of the Hubbard model, in which it is hypothesized to occur. Certainly 
many details of anyon behavior, and perhaps even important qualitative features, 
can only be uncovered in this way. As we will demonstrate in this review, however, 
there is much that can be learned by studying anyon systems in a 2+1-dimensional 
point particle idealization. In particular, the Chern-Simons formalism, described 
in this section, gives a powerful and intuitive description how anyon superconduc- 
tivity occurs, independent of the of the underlying physics that produces anyons. 
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3. ANYONS AND HIGH Tc SUPERCONDUCTIVITY 

In his pioneering work on high Z’, superconductivity, Anderson’“‘pointed out 

the two-dimensional nature of the copper oxide materials, the importance of the 

strong magnetic ordering, and the possibility of exotic excitations. Immediately 
afterwards Kivelson, Rokhsar and Sethna”” showed that Anderson’s Yesonating 
valence bond” picture implies the existence of “spinons”, neutral spin l/2 fermions, 
and “holons”, charged spinless bosons. Condensation of the holons was proposed as 
a possible mechanism for high Z’, superconductivity. Dzysloshinskii, Polyakov and 
Wiegmann”’ proposed another description involving bosonic composites consisting 
of charge carriers and solitons of a Q model with a Hopf term. A major development 
in the field occurred with the works of Laughlin and his O-4 collaborators, who 
proposed that high T, superconductivity could result from condensation of bosonic 

composites of onyonic quasiparticles. Several models were subsequently proposed 
which contained such anyonic quasiparticles. The most common such model was 
based on the so called flux phase of the Hubbard Model first studied by Affleck 
and Marston?’ In this chapter, following the latter reference, we describe some of 
these suggestions as to how anyons may arise in high Tc materials. 

The suggestion that high T, materials should be described by a tight binding 
model such as the Hubbard model was first suggested by Anderson. “” In the Hub- 
bard model we imagine electrons with their two possible spin orientations tightly 
bound to atomic sites. The hamiltonian includes two terms. One term allows hop- 
ping of the electrons between sites and the other discourages electrons (even those 

of opposite spin) of occupying the same site. Let cj- and q. be the creation and 

annihilation operators for an electron of spin o at site i. The Hubbard hamiltonian 
is then given by: 

H = t 1 ($c; + h.~.) + (i) C(ni - 1)' 

<i,j> I 

where n; = c1-q is the number operator for electrons at site i. Although the 
model as written clearly prefers precisely one electron per site (neither less nor 
more) we could easily alter this situation by adding a chemical potential to the 

hamiltonian proportional to C; ni which would shift the preferable value of ni to 
any other v&e. Physically the cases of interest are close to the case of half filling, 
ni = 1. High ‘I’, materials at half flUing are not superconductors. Instead these 

materials are generically antiferromagnets. In order to make a superconductor one 



must dope these materials. The net effect of this doping is to remove some free 
electrons from the system. Thus in order to discuss superconductivity we should 
consider a Hubbard model somewhat away from half filling. 

It is well known”” that in the limit of large U (i.e. U >> t) the Hubbard model, 

at half filling, reduces to the Heisenberg antiferromagnet with an antiferromagnetic 
coupling .I = 4t’/U. It is often useful to discuss a hybrid of the Heisenberg model 
and the Hubbard model with a hamiltonian of the form: 

H = t C (~1~~7 + h.~.) + (;) C(mi - 1)’ + J C Si. Sj (3.2) 
<id> t <id> 

where S; = i C~QC; are the electron spin operators at site i and Q are the Pauli spin 

matrices. This hybrid model is often called the t-J model. 

The Hubbard model and its extensions such as the t-J model are quite difficult 

to solve in 2+1 dimensions. Even the large U limit of the half filled Hubbard model 

which, as we have said, is equivalent to a Heisenberg antiferromagnetic model, 

cannot be solved analytically. It is relatively recently that numerical studies have 

confirmed that the ground state of the quantum Heisenberg antiferromagnet in 

2+1 dimensions is, in fact, antiferromagnetic i.e. that the ground state is the N&l 

state with a mean, nonzero, staggered magnetization. This state violates both 

parity P and time reversal invariance T but it is not a candidate for an anyonic 
model since parity, combined with translation by one site, remains a symmetry of 

the model. In particular in the continuum limit of the theory both P and T will be 

good symmetries and no anyonic statistics will be present. In order to get anyons 

we need a model which violates P and T at large distances as well. 

Since the Hubbard model is so difficult to analyze it has been useful to extend 
it and study the possible phases of the model as a function of the strengths of 
several other possible interactions. The extension to the t-J model is one such 
possibility. Other extensions which have proven very useful are the inclusion of a 
biquadratic spin-spin interaction proportional to C(Si . Sj)’ and the inclusion of 
a next to nearest neighbor antiferromagnetic interaction which tends to frustrate 
the antiferromagnetic order. The biquadratic interaction has been used by Affleck 
and Marston’” to stabilize the P,T invariant flux phase of the large N Hubbard 
model (i.e. the Hubbard model generalized to a ‘spin’ group SU(N) for large N). 
The next to nearest neighbor interaction leads to the best known way of generating 
the P, T no&variant flux phase discussed by Wen, Wilczek and Zee!’ 
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To underatsnd the possible origin of a P,T noninvariant flux phase we shall 
first describe briefly the mean field theory which leads to the P,T invariant flux 
phase of Affleck and Marstony’ The first step is to rewrite the t-J hamiltonian, 

using Pauli matrix identities, in the following form: 

H = t c ($cjo+h.c.) + (;)~(Cf,4-1)z - (J/2) c ($C,-,+ti,<) (3.3) 

<ii> t <i,j> 

where an additional “chemical potential” term proportional to C n; has been sup- 
pressed. We next write the partition function in the path integral form as follows: 

2= 
J 

DcDctexp( - jth,H + ~c~/$] ) 

0 
(3.4) 

The next step is to replace the (quartic) four-fermion terms in the action with 

(cubic) Yukaw. interactions by introducing two new scalar fields: a real scalar 

field 4; at each site and a complex scalar field xij on each link. The path integral 

(3.4) can now be replaced with an integral over the fields c, ct, 4 and x with the 

lagrangian 

L = c c;$ + t c (c& + kc.) + -&$; + i+j(c;,c; - 1)) 

j <j,I> j 

+ C (5/Xjmla + {XmjCfeCb, + h’c’l) 
<j,m> 

(3.5) 

The action (3.4) can be obtained from this action by performing the Gaussian inte- 
gration over 4 and x. This transformation is known as the Hubbard-Stratonovich 
transformation?’ Note that 4; is related to ni and that xij is related to c!cj. An 
additional chemical potential term can be added either as a term proportional to 
ni or as a term proportional to 4;. This lagrangian (3.5) forms the basis for the 
mean field analyses of the Hubbard model. (Of course we may still want to add to 
it additional terms such as biquadratic spin interactions and next-to-nearest neigh- 
bor antiferromagnetic interactions on which variants of the Hubbard-Stratonovich 
transformation can be performed.) 
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It is useful to note that the lagrangian (3.5) has a U(1) gauge symmetry in 

the Heisenberg limit t-+0, U-too with J fixed. In fact 4; acts like a temporal 
gauge field and xij acts like a spatial link operator. The gauge symmetry is simply 

cj -+ ap(i@j)cj with dj --t dj-dBj/dr and xj, + x,,exp(i(@j-&,,)). 

The Iagrangian (3.5) is analyzed in the mean field approximation by first for- 

mally integrating out the electron fields c and ct. The result is an effective action 

which is a function of the scalar fields C$ and x. The next step is to do a saddle 
point approximation to the integral over 4 and x by attempting to minimize the 

effective action with respect to 4 and x. This approximation can be justified in 

a large N limit (see ref. [49]). The simplest way to find such extrema is to make 

an ansatz for 4 and x assuming certain symmetry properties for them and then to 

see whether the resulting fields are in fact extrema and whether these extrema are 
stable. The ansate which is relevant in discussions concerning anyons results in the 

so called flux phase. We let the magnitude of x be constant throughout the lattice 
and we adjust the phases of x so that there is a flux x through each plaquette. 

More precisely the product II of x around any plaquette is equal to efi* = -1. In 
the Heisenberg limit we cannot allow x itself to have a nonzero expectation value 
since it is not gauge invariant but the plaquette operator II is gauge invariant. 
It is shown in ref. [49] that for some small nonzero doping, and when a nonzero 
biquadratic interaction is included, the above ansatz leads to a stable extremum 
of the action. 

The flux phase described above does not lead to anyonic statistics in the con- 
tinuum limit since it violates neither P nor 2’. In ref. [9] a modification of the flux 
phase of ref. [49] is proposed which does violate P and 2’. Imagine a plaquette on 
a square lattice with points labeled 1 through 4 in a clockwise direction beginning 
with the lower left hand corner. The plaquette operator II described above is given 

by the product xL,xl,x,,xI, with each xij being related, via the Gaussian integral 

(3.5), to e!-$. We could introduce a diagonal operator xI1 equal to ctf$. We can 
then consider the product of the x’s (i.e. the flux through) the triangle [1,2,3,1]. 

This is given by x = xl.x.,xII. One now considers a modified flux phase in which 
the expectation value of x is nonzero and equals exp(ix/2). There is now a flux x/2 
through each of these triangles. Such a ground state breaks parity and time rever- 
sal invariance even in the continuum limit and is thus a candidate for an anyonic 

model. It is shown in ref. [9] that the introduction of a sufficiently strong next to 

nearest neighbor antiferromagnetic interaction can stabilize this phase. In such a 
case one can analyze the electronic spectrum about the extremum for x. One finds 

that the electrons acquire a parity noninvariant mass. The resulting low energy 
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effective theory is that of two massive electrons (actually quasiparticles with the 
electron’s quantum numbers) coupled to a fictitious gauge field. Since the theory 
is not parity invariant, a Chern-Simons term will be generated in one loop leading 

to anyonic statistics for the quasiparticles. It is expected that these quasiparticles 
will have a statistics parameter i and they are thus called sermons. 

It should be clear from the above discussion that although anyons are a possible 

outcome of modified Hubbard models, there is no compelling reason to suppose 
that these models do in fact violate P and 2’ and thus lead to anyons. It is merely 
the possibility that an anyonic system may occur in such cases combined with the 
fact that anyonic systems are superconductors which makes the subject of anyonic 
superconductivity so fascinating. 

4. CHERN-SIMONS DESCRIPTION OF ANYONS 

In chapter 2 we saw that an anyon with statistics parameter -y could be de- 

scribed by introducing a fictitious “statistical” gauge field a,, and by assigning 
to each anyon a “statistical” magnetic flux of strength -r/e. We wrote down the 

hamiltonian (2.4) for a system of (otherwise) noninteracting anyons in terms of the 
gauge potentials generated by these magnetic fluxes. The statistical gauge field has 
no dynamics except for the dynamics implied by its being attached to a dynamical 
anyon. 

The above considerations allows for a very compact way of implementing any- 
onic statistics in quantum field theory. We begin by describing anyons in the 

language of relativistic quantum field theory. For non-interacting anyons, the non- 
relativistic limit of such a theory will precisely describe a nonrelativistic system of 

anyons. The idea is to begin with a single massive two-component fermion field 4 
and with a statistical gauge field a,,. The lagrangian will have a kinetic term for 

the fermion field but none for the gauge field since it is not dynamical. Anyonic 

statistics are implemented by introducing a Chern-Simons term into the action. 
The lagrangian is given by’““‘] 

C = i;i;(JJ - m)$ - ~~~~~~~~~~~~ 

where D, = 8, - iea, and B is called the Chern-Simons coefficient. Note that the 

Maxwell term for a,, is absent. The equation of motion which is derived by varying 
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ag is simply 

b=: ep (4.2) 

where b = V x a is the magnetic field associated with a and p = +t$ is the fermion 
number density operator. Thus to every fermion (with pV = 1) there is attached 
a “magnetic” flux of magnitude e/O. It follows that each fermion is actually an 
anyon. When two such fermions are interchanged one picks up a phase exp( -ix) 
since the particles are fermions but one also picks up the extra phase due to the 
magnetic flux of the fermions. This extra phase is only half the usual Aharonov- 
Bohm phase, due to the presence of the Chern-Simons term!’ Thus the statistics 
parameter becomes 

where the parameter N = 2xO/e2 has been introduced for convenience. Note that 
when N=l we have bosons. When N=2 the particles are called semions and when 
N+oo we recover fermions. In principle there is no reason for N to be an integer 
but we shall see that superconductivity oc,curs only for integer N. The case N=2 
when the anyons are semions is the case of most interest in applications to real 

materials. 

The argument presented above for the relationship between anyons and Chern 
Simons theory is quite heuristic. In fact the Chern-Simons theory above describes 

anyons with an additional interaction due to the “other” equation of motion & cc ‘Ti 
which is obtained by varying oi. There is, however, a wealth of literature on this 

subject?-*” Most authors agree that the Chern-Simons lagrangian above describes 

a system of anyons although there is still some remaining controversy on this 

subject. In this paper we shall take the Chern-Simons theory as our definition of 
an anyonic system and we shall be concerned exclusively with studying this model. 

The next important step in studying an anyonic system is to introduce a finite 

density of anyons. The simplest way to do this in the context of the field theory 

above is to introduce a chemical potential term into the hamiltonian replacing the 

hamiltonian H with H - &‘$. This analysis is most conveniently implemented in 
the Euclidean formulation of the quantum field theory in which we write the zero 
temperature partition function, Z, evaluated by the path integral expression 

z= ~7+h~ijhh,e+p(-SE) J (4.4) 
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where SE is the Euclidean action given by 

q(j2 (4.5) 

Note that the chemical potential term has been introduced into the action to 
implement a finite density of anyons. This particular description of anyons will be 
used extensively in this review, although other descriptions will also be considered. 

5. THE CRITERION FOR ANYONIC SUPERCONDUCTIVITY 

Now that the notion of an anyon is established and the field theoretic de- 
scription presented, the next question to address is whether an anyonic gas is a 
superfluid, or a superconductor if it is electromagnetically charged. This is the 
central topic of this review. Before delving into detailed analyses of this question 
we should first clarify precisely what we mean by superconductivity of anyonic 

systems. A related question is whether we can find a simple criterion which can be 

used to determine whether a gas of anyons is a superfluid (or a superconductor). 

The ultimate test of whether a material is a superconductor is whether it admits 

dissipationless current flow and whether it has a Meissner effect. A super&id 

should, of course, have dissipationless flow as well as other features of superfluids 

such as the fountain effect and vortex formation. In conventional (such as BCS) 

superconductors and in conventional superfluids (such as 4He) the generic signal 

of superconductivity and superfluidity is the spontaneous breaking of a U(1) sym- 
metry. In BCS theory this results in the breaking of the electromagnetic U(1) 
symmetry which leads to a mass for the photon and a Meissner effect. In liquid 

Helium the symmetry breaking leads to a Goldstone boson which is the sound wave 
in the superfluid. In this case, a generic feature of the theory is the presence of a 
pole in the current-current correlator due to the Goldstone mode. In the case of the 
superconductor, this pole is present only in the one-particle-irreducible current- 

current correlator. The full correlator has a massive pole due to the acquired 
photon mass. 

As a result of the generic presence of symmetry breaking in superfluids and su- 
perconductors, it is tempting to use this as a definition of these phenomena. This is 
inadequate since in l+l dimensional systems as weU as in 2+1 dimensional systems 
at nonzero temperature, symmetry breaking cannot occur due to the Coleman- 
Mermin-Wagner theorem!” But despite this theorem the Goldstone mode is still 
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present. It simply destroys the long range order. Thus the presence of a Goldstone 

mode seems like a better criterion for superfluidity than simply symmetry break- 

ing. Furthermore we shall see during our detailed analysis of anyonic systems that 

there is no obvious symmetry which is broken. Yet the system exhibits a Meissner 

effect and supercurrent flow. The massless mode in the current-current correlator 
is, nonetheless, present. Of course the presence of a massless mode (even one with 

a dispersion relation w ce k for small k) is clearly not sufficient for superfluidity. 
We must, of course, demand that the system be a liquid or a gas and not a solid 

(i.e. that translation symmetry be unbroken). Furthermore, if the system contains 

fermions, there must also (generically) be a gap in the fermion spectrum. (We shall 

not concern ourselves with gapless superconductors which are an exception to this 

rule.) This gap serves two purposes. First of rdl it stabilizes the Goldstone mode 
against decay into fermion-hole pairs. Secondly it ensures that the production of 

fermion-hole pairs does not dissipate the superflow as would occur in Fermi-liquid 

theory. 

In summary, a reasonable criterion for superfluidity is the presence of a mass- 
less mode in the current-current correlation function combined with a gap in the 
fermion spectrum. In the case of charged anyons this wilI naturally lead to a 
Meissner effect but, of course, we should show this as well. 

We shall see in chapter 6 that it is quite straightforward to show that there is 

a gap in the fermion spectrum when N = 2x@/.? is an integer. In the remainder 
of this chapter we would like to establish a simple field theoretical criterion first 
proposed by Banks and Lykken[“’ which ensures the presence of a massless pole in 
the current-current correlator. 

5.1. THE RENORMALIZED CHERN-SIMONS TERM AND SUPERFLUIDITY 

A massless pole in the current-current correlator will occur if there exists a 
mode (which couples to the current) whose dispersion relation w(k) is such that 
w-t0 as k-0 or, more precisely, w 0: k for small k. We are thus interested in 
studying the smrdl w and k regime of the theory. Our technique for finding a 
suitable criterion for superfluidity (or superconductivity) is to consider the “bare” 
action (4.1) or, its Euclidean version, (4.5), and to evaluate the low energy effective 
action for this theory. There are many ways to do this but, for definiteness, we 

imagine integrating over all the fermionic degrees of freedom and then evaluating 

the effective action for the gauge fields. This effective action can be evaluated 
as a series in powers of the gauge fields, and, if desired in a derivative (or low 
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momentum) expansion. In perturbation theory, the coefficient of the term in the 

effective action which is of order j in powers of a, is equal to the sum of all 
(amputated) one-particle-irreducible graphs with j gauge field legs (plus, of course, 
any such term which is present in the action to begin with). In particular the 
one-particle-irreducible current-current correlation function is the coefficient of 
the aPaV (i.e. 2 “photon”) term in the effective action. Thus by studying the 
low momentum effective action for this theory we can determine the one-particle- 
irreducible current-current correlation from which one can deduce the possible 
existence of a massless mode in a straightforward manner. 

It turns out that we can say quite a lot about the effective action for the 
theory given by the action (4.5), by symmetry considerations alone. The lowest 
order renormalization of the effective action is of the form 

a“(k)&w(k)=“(-k) (5.1) 

where II,,(k) is the vacuum polarization (one-particle-irreducible current-current 

correlation function). II,, can be split into an even and an odd part: 

&w(k) = n$(k) + +dLc&) (5.2) 

The even part corresponds to an induced term which is analogous to the Maxwell 

term in electrodynamics (but including a general momentum dependence) whereas 

the odd part corresponds to a renormalization of the Chern-Simons term in the 

effective action. At zero temperature and density the system is Lorentz invariant 
(but, of course, not parity invariant). This constrains II;” to be of the form: 

n;p(k) = ~e(kz)(g,&* - k&v) (5.3) 

At nonzero temperature and density the system is no longer Lorentz invariant but 
it remains invariant under spatial rotations. The odd part of Il in equation (5.2) is 
unchanged in this case. This is related to the fact that there is no difference between 
the form of the Chern-Simons term in the nonrelativistic and in the relativistic 
(T=p=O) case. The reason for this is that there is no gauge invariant way to split 
the Chern-Simons term. This, in turn, is an outcome of the fact that the Chern- 
Simons term is a topological (metric independent) term. The even part of II is, of 
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course, modified. The most general form of II which is rotationally invariant and 

depends only on the momentum k is: 

(@f _ kikj)h;+j 

(5.4) 

where w = k” and where 0,” is an additional gauge and rotation invariant tensor 

which can be constructed in 2+1 dimensions and which depends on *k = cijkj the 

dual vector of k. @PLY is given by: 

42 
0 

op, = 
-*k; k 

42 
-*kj k w(‘kikj + ki’kj) 

(5.5) 

We are now ready to look at the contribution of II to the effective action. Since 
we are interested in the low momentum behavior of the theory we now consider 

the leading contributions of each of the above terms at small momentum. Let us 
assume that each of II:, IIt and II: have a nonsingular limit as k + 0. This will 
certainly be the case when p=T=O since the fermions have a mass. We shall see in 
chapter 6 that it is also true when p# 0 provided the Chern-Simons coefficient A’ 
is an integer so that there is a gap in the fermion spectrum. This assumption may, 
however, fail at nonzero temperature which somewhat complicates that analysis. 
The leading low momentum behavior of each of the terms in equation (5.4) is then 
given by replacing the various II’s by their values at k=O. Let us define: 

II. = II;(k = 0); IIs = Il;(k = 0); IIN = II:(k = O);II, = IIodd(k = 0) : (5.6) 

Let us also define the renormalized Chern-Simons coefficient 0~ = R-II, where 
.4 is the bare Chern-Simons coefficient. Using equations (5.1), (5.4) and (5.5) 
and including the bare Chern-Simons term from the action (4.5) the leading low 
momentum terms in the effective lagrangian are given by: 

1 1 
&ff = -&f’“f,,y f-n f”fij f ‘exe 

4 4b” 2 
‘“‘afla”aA - ilYI,8ifOiLjhfjk (5.7) 

Note that a Maxwell term has been induced by quantum and statistical corrections 
and that the value of the Chern-Simons coefficient is renormalized. The last term 
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in equation (5.7) is higher order in derivatives and we include it here both for 

completeness and because it turns out to lead to important low energy consequences 
which are discussed in chapter 10. 

The central result of this section is that a necessary and suficient condition for 
the ezistence of a massless pole in the current-current correlator is that OR vanish; 
assuming, of course, that there are no singularities in the vacuum polarization 
at sero momentum which could introduce nonlocal terms into the effective action. 

There are several ways to see this result. The simplest is to consider the (Euclidean) 
equation of motion for the statistical gauge field in the presence of a current density 

.I,, in the long wavelength and linear approximation. From equation (5.7) it is given 
by: 

&,a,, f Ir” f &6T&f” + idReYa’B&p = J” (5.8) 

When BR = 0 this is the equation of motion of a massless (gauge) particle with a 
dispersion relation (in Minkowski space) 

w = vk with 

Now according to equation (5.8) this massless particle couples to the statistical 
current J’. It thus follows that there if BR vanishes there will be a massless 

pole in the current-current correlation. Note, however that, as discussed above, 
the regularity of the vacuum polarization is essential. For example a term in II: 
o( l/k2 as k+O would lead to a term cc ufi in equation (5.8) which would lead to 
a Higgs-like mass for this mode even when OR = 0. If, on the other hand, eR # 0 
then equation (5.8) is precisely the nonrelativistic generalization of the equation of 
motion for a topologically massive gauge field in 2+1 dimensions!““’ Both charges 
and currents are screened. The mass of the mode is e&I, and its spin is eRj]eR]. 
It follows that the current-current correlator cannot have a massless pole since, if 
it does, the statistical photon Green’s function would have a massless pole which 

lead to long range forces which are not present in equation (5.8). 

There are several other ways of demonstrating this relationship between the 

vanishing of 6~ and the occurrence of a massless excitation coupled to the current. 

In particular it is possible to demonstrate this perturbatively. By summing the 

geometric series which relates the one-particle-irreducible vacuum polarization to 

the full current-current correlator it can be shown that a pole exists in the fuIl 

correlator if and only if the renormalized Chern-Simons term vanishes (assuming 
the now familiar regularity conditions). This is discussed in detail in ref. [23]. 
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5.2. THERENORMALIZED CHERN-SIMONS TERM AND SUPERCONDUCTIVITY 

Having established a reasonably simple criterion for anyonic superfluidity we 
can now show that this condition, namely the vanishing of OR, is also a necessary 
and sufficient condition for superconductivity if the anyons are electricrdly charged 

and thus coupled to the photon field. Electromagnetism is introduced into the 

system by introducing the electromagnetic field A,, and its field strength F,,” and 
by replacing the action (4.5) with the modified Euclidean action 

SE = d’z J ( ~(JJ 

with D, = 8, - ieaP - igeA, where g is the electromagnetic charge of the anyon 

measured in units of e. We can now proceed, as before, by integrating out the 

fermion fields and considering the low energy effective action for both the electro- 

magnetic and the statistical gauge fields. As discussed above we shall concentrate 

on those terms which are quadratic in the gauge fields. Since both oP and A,, cou- 
ple to the current in an identical fashion except with a different coupling strength, 

it is the same vacuum polarization tensor If,,, which couples a to a, A to A and 
a to A. II, is, of course, just the one-particle-irreducible fermion current-current 

correlator. We again assume that If has the decomposition (5.4) and that the 
various coefficients are nonsingular at zero momentum. Using the definitions (5.6) 

we can write the low momentum Euclidean effective lagrangian as: 

f&ff = a(1 +g211.)F,,yFpY + ig’&FijF’j + ~II.fp’f,y + il&,f’j,f;j 

+~~R~'~~&~~ - $?II.E’Y’A,avA~ - ~g11,r’~“(A,,~3~a~ + ,@,A~) 

++g&Fpvf’” f i gW’ijf’j - inN&(fOi + SFOi)Ejk(fjk + gFjk) (5.11) 

Note that, as expected, the parity violation in the anyonic sector now appears also 
in the electromagnetic sector. 

Just as in the case of neutral anyons there are several ways of analyzing this 
effective action. Since the result which we need, namely that for OR = 0 the photon 
acquires a mass, is a central argument in the discussion of anyonic superconduc- 
tivity, we shall discuss several of these approaches to analyzing this problem. The 
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most straightforward way is, just as before, to study the equations of motion for 

the two gauge fields. If we are interested only in the dynamics of the electromag- 
netic field (for example if we want to study the possibility of a Meissner effect) it 

is simplest to solve the field equations for a,, as a functional of A, and then to 
consider the effective action for the electromagnetic field alone. (This is equivalent 
to having integrated both the fermion fields and the statistical gauge fields out 
at the beginning and considering an effective action for the electromagnetic field 
alone.) If we were to follow the analysis for neutral anyons faithfully we would now 
ignore the terms in equation (5.11) which are proportional to IIN since they are 
cubic in derivatives. It turns out, however, that this is not such a good idea since 

these terms contribute to the effective action for A in the same order as some of 

the lower order terms. The derivation of the effective action for A for general OR 

is carried out in detail in ref. [42]. In this chapter, however, we shall restrict our 

attention to the case when OR = 0 and we shall provide several arguments to show 

that, in this case, the photon acquires a mass term which leads to the Meissner 

effect and to superconductivity. The converse of this is demonstrated in ref. [42]’ 

The procedure just outlined is straightforward, though quite tedious. Fortu- 

nately there is a very useful trick for solving for a in terms of A. The idea is to 

change the dependent variables in the problem from e,,(z) to f,,“. This can be 

done”““’ by introducing a lagrange multiplier field I+ which imposes the Bianchi 

identity constraint 8, ‘f” = 0 (where ‘f” = i eJ’“af,y is the dual of f) so that 

& eff -+ Lff + $8, .f”!’ The trick now is to solve only the equation of motion 
for the statistical gauge field, which now becomes 6Seff/Sf,,y = 0, in terms of @ 

and A,, to obtain a new effective action which depends on both A and on @. To 
simplify the discussion as much as possible at this stage we shall neglect the terms 
proportional to IIN in equation (5.11) and simply mention what effect they have. 
More details will be presented in chapter 10. Thus, setting eR = 0 in equation 
(5.11) neglecting terms (x IIN, solving for fpy and plugging the solution back into 

t The method of solving the equations of motion ia very closely related to an alternate ap- 
praaeh which treats the low energy effective action QII a quantum action. One then performs 
8 saddle point (or, if possible a Gaussian) integral over the gauge fields to obtain a similar 
result. The method which we have been discussing is more appropriate for the effective 
action defined as a Legendre transform of the energy. 

tt In ref. [14] a slightly different method was used to derive L.,,(Ap, +). There, using a path 
integral approach, an insertion of 1 = J DZ,,,6(2,,, - fPy) into the path integral for the 
effective action, leads to a similar final answer. 
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equation (5.11) results in the following modified effective lagrangian: 

L,ff(A,,, p) = :(I + ~ZH.,)F~vF”Y + ~g211~Fi~F’j - ~gz6P’AAp&A~ 

+~ (‘OlP + CAo)’ + ~ V’(aip + CAi)2 (5.12) 

+IZ(~OP + CAO)‘FO + b(49 + CAi)*F; 

where we have defined p2 = @‘/(II* + II.) and where v is the velocity of the 

Goldstone mode of equation (5.9): d = (1 + I&/II.); C = eg/Jm and 

a=b = (id-);;). ‘F is, of course, just the dual of F, and we have used the 

fact that OR = 0 several times to replace II, with 6. Note that neither gauge 

invariance nor rotational invariance requires the coefficients a and b to be equal. 

In fact had we kept the terms cc IIN in equation (5.11) we would have found that 

a and b are not equal. We shall discuss this further in chapter 10. 

The effective lagrangian (5.12) is invariant under the gauge transformation ‘p -+ 
(O-CA and A, --t A,+S’,A. In fact the terms 4 (&p+CAo)’ + 4 vZ(airp+CAi)’ 
together with the Maxwell terms are precisely the Higgs effective action in a form 
known as the Stuckelberg form. In fact in the conventional Higgs mechanism with 

a scalar field x = pei#, the phase 4 of the field plays precisely the role which ‘p 
plays in the above effective action. Note also that explicit photon mass terms of 
the form AoA” and AiA’ are present in the above effective action. Furthermore if 
we wish, we can now solve the equation of motion for ‘p to get an effective action 
for A alone which would also exhibit a Higgs mass for the photon. 

We thus see that a massless statistical photon (i.e. one with OR = 0) leads to a 
ma.w for the real photon. It deo leads to P and T violating terms in the effective 
action. 

Equation (5.12) has one additional feature which requires attention. Besides 
the “Higgs” mass for the photon, the photon has also acquired a “topological” mass 
due to the induced Chern-Simons term ) g211,,d‘“‘A,i3,A~. This mass term is dif- 
ferent from the Higgs mass term in many respects. The most striking difference 
is that it violates parity and time reversal invariance. Furthermore it’s presence 
neither results in nor implies a massless pole in the one-photon-irreducible vac- 
uum polarization. It is simply due to an additional tensor structure which appears 
due to parity violation. Thus even if the Higgs mass is related to the breaking 
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of some unknown symmetry and/or Bose condensation the Chern-Simons mass is 

unrelated to these effects and simply reflects the parity violation in this system. A 
consequence of this is that the Chern-Simons mass term is present even if eR # 0 

(provided that II,, does not vanish). 

Why then do we not accept the presence of a Chern-Simons mass for the 
photon as a criterion for superconductivity? There are many reasons. The simplest 

explanation is that the Higgs terms in the effective action lead to the conventional 
phenomenology of the Landau-Ginsburg theory of superconductivity. If only a 
Chern-Simons term were present, the phenomena would differ significantly. For 
example in the absence of a Higgs field such as ‘p there is no natural reason for 
vortices to occur. Vortices are, of course, a generic feature of superconductors. 
Note that although there is a Meissner effect even if only a topological mass is 
present in the sense that a constant magnetic field is not a solution to the field 
equations its origin is quite different from the conventional effect. Furthermore in 
the presence of a topological mass term alone one can compute the response of 
the system to a constant electric field by computing the current-current correlator 
and one finds that there is no divergence in the current. Thus even in the absence 
of impurities the system does not have a supercurrent. A related problem is that 
if 0~ does not vanish (so that there is no Higgs mass) then a neutral system of 
anyons is not a superfluid. Thus if the anyons are charged, we do not expect 
superconductivity even if a topological mass is present. An additional problem 
with a criterion based solely on the presence of a topological mass is that such 
a mass is present in 2+1 dimensions only. It is difficult to see how such a mass 

term could be modified so that it would lead to a Meissner effect in a realistic 3+1 

dimensional systeml”‘. This is not a problem with the Higgs form of the Meissner 

effect! We shall thus call a system an anyonic superconductor only if a Higgs mass 

is present which, as we have seen, is related to the vanishing of 8~. 

This relationship between a massless statistical photon in the absence of elec- 

tromagnetic coupling and a massive electromagnetic photon can also be seen per- 

turbatively (i.e. diagrammatically). T o see this, let K,,” be the full current-current 
correlator in the absence of electromagnetic coupling. The presense of a Goldstone 

mode implies that K has a massless pole of the form (g,,“$ - ~,,p~)/$. When 

t Note that both forms of the mass term can expel magnetic fields in a direction perpen- 
dicuk to the 2 dimensional plane only since this is the only magnetic field present in the 
2+1 dimensional model. The Meissner effect parallel to the plane will likely result from 
superconductivity between the 2 dimensional planes which may be caused by some kind of 
a tunneling phenomenon. 
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electromagnetic coupling is present, K can be treated as the leading order (in the 
electromagnetic coupling g) one-photon-irreducible vacuum polarization for the 
photon. The photon propagator is estimated by summing the geometric series 
shown in Figure 1. In Feynman gauge the photon propagator has a term propor- 
tional to g,,,, with a coefficient l/($-k) where 2 is the coefficient of gru in K. 
Clearly if K has a massless pole then 2 approaches a nonzero constant as q-to. 

The photon propagator will then have no massless pole and will in fact have a pole 
at a noneero value of q2. This is, of course, the Meissner effect. 

An alternate but closely related way of seeing this “duality” between the ficti- 

tious and the electromagnetic gauge fields was presented by Wen and Zee!‘?Ising 

.J~=c%~“‘&z~ we can relate the current-current correlator to the propagator of 

the fictitious gauge field C,,,as follows: 

Kfiy E< J,(k)J,(-k) >= ~,,g~y,6k=kyCPs(k) (5.13) 

Now for BR=O we showed that there is a massless pole in the current-current 

correlator and that the statistical photon’s propagator is that of a massless photon 

(for small momentum). Thus in the long wavelength approximation 

C py _ (g,w - k&lk2). (g,wk’ - k&v) 
kl I 

K 
PV - ka 

(5.14) 

When coupling J,, to the electromagnetic field A, we get in momentum space the 
effective action 

I 
d3kK““A,(k)A,(-k) N J d3kgpyA”(k)A”(-k) (5.15) 

We thus get a mass term for the photon. For OR # 0, on the other hand, we find 

C TV N hv - W+a); 
ka+d 

Kpy _ (s,wka - k,hv) 
ma 

(5.16) 

where m is given by 8&I.. The photons will now acquire an effective Maxwell 
term for without a mass term. 

! - k“k”)A”(k)A”(-k) 
1 I dkK’“A,(k)A,(-k) N 

I 
d3k(srvlc’ 

m- 

-J 
(5.17) 

This phenomenon of the “duality” between the two gauge fields has been studied 
extensivelyYe”’ 
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Various other derivations of the effective action have been suggested?““11-6” 

A brief summary of some of these methods will also be included in chapter 6. 

To summarize, it was shown in this section that the vanishing of the renor- 

malized Chern-Simons term is a necessary and sufficient condition for having a 

massless pole in the current current correlator. This result holds for both the rel- 

ativistic and non-relativistic domains i.e. both at zero and at finite density. The 
only possible loophole occurs at finite temperature where there is the possibility 
of singularities in the even part of the vacuum polarization. We have also shown 
that the existence of this massless mode leads to a mass term for the photons and 
to a superconductivity in the low energy effective action for the theory which is, 

in fact, the Landau-Ginsburg effective action. 

6. THE MASSLESS MODE 

Our goal in this chapter is to show the existence of a massless pole in the 
anyonic current-current correlator. In the previous chapter we saw that in the 
context of a field theoretic formulation of anyons (i.e. the Chern-Simons theory) a 

condition for the existence of such a massless pole is that the renormalired Chern- 
Simons term for this theory vanish. In other words if the quantum and statistical 

corrections to the Chern-Simons coefficient precisely cancel the coefficient in the 
lagrangian, we are assured that a pole is present in the current-current correlation 

function. 

We begin this chapter with the calculation of the one loop renormalization of 
the Chern-Simons term at nonzero density. This is presented in detail in section 

6.1. We show that the renormalized Chern-Simons term at nonzero density van- 
ishes when 2x0/e2 is an integer. This proof is extended to all orders in perturbation 

theory in chapter 8. In section (6.2) the renormalization of the CS term is rederived 

using Schwinger’s proper time integral method. The remaining sections contain a 
brief discussion of two other distinct, though not unrelated, methods of deducing 

the presence of the massless mode. In section 6.3 we discuss the random phase 

approximation (RPA), which was originally carried out in ref. [5] and was later 

presented in ref. [15]. The RPA is closely related to the method of section 6.1. We 
then discuss briefly the derivation based on an “inhomogeneous expansion”!“’ It 

should be noted that Fradkin[“” has obtained results using lattice methods which 
are in complete agreement with the field theoretic results reviewed below. 
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6.3. RENORMALIZATION OF THE CHERN-SIMONS TERM AT ONE LOOP 

In this section we consider a system of anyons described by a single two- 
component massive fermlon field coupled to a CS fictitious gauge field a,,. We 
introduce some finite, nonzero density of anyons by adding a chemical potential 
term to the action. The Euclidean path integral expression at zero temperature 
(T=O) for the partition function of the Chern-Simons theory at finite chemical 
potential /A is given by: 

z = 
J 

v7p~va,exp(-S~) 

with 

SE = J ( d3x q(Jd --VI)+ + i~PvA~,a~~A - p#4 
> 

(6.2) 

where D,, = +-km,,. We shall work throughout with a nonnegative chemical 

potential c. Our ultimate goal is to show that the renormalized value of 8 vanishes 

at nonzero density whenever 2rrb’/ea is an integer 

Feynman Rules 

Our first step is to derive Feynman rules for this system for a perturbation 

expansion in e2/8. We choose to work in Coulomb gauge (aio’=O). We proceed 
by integrating out the ao field, which simply gives the Gauss law constraint &(23 - 

itit+). This delta function now allows us to do the integral over or and ar by 

setting 

e 
0s; = -Btij~~+~ 

This leads to the following effective 4-fermi theory: 

JD+D~ ezp[- Jd3r ($(g- m - pro)+ + $~&‘+)~(~y”+))l (6.4) 

We use the gamma matrices -yr=or, yr=os, and 7o=os where oi are the Pauli spin 
matrices. Notice that the effect of the chemical potential is simply to replace 80 by 
130-p. We thus define 8” to be equal to 8, unless v=O in which case a,, = i&-p. 
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We begin by studying the fermion propagator S(z, z’) for this theory. The bare 
fermion propagator So(z, z’) is simply l/(8 -m). Perturbative corrections to this 
propagator will be computed from the Feynman rules which arise from the path 
integral expression above. The vertices for this theory are 4-point fermion ver- 
tices which connect a current Ji to a density Jo. Each such vertex carries a factor 

-i$(e#/V’). This vertex is shown in Figure 2a. It is often convenient to rep- 
resent this vertex via the diagram of Figure 2b in which the standard QED vertex 
with a value +iey, is used and in which a Chern-Simons propagator is explicitly 
shown. This propagator (in Coulomb gauge) is nonzero only when connecting a Ti 
vertex with a 70 vertex and then has a value $(+j/V’). 

Tadpole Corrected Perturbation Theory 

Our first observation when evaluating perturbative corrections to the fermion 

propagator is that, in the presence of a nonzero chemical potential p#O, the tadpole 

graphs such as those of Figure 3 do not vanish. These tadpoles are nonvanishing 

since < Jo >= ~0 is nonzero when p is nonzero. Note that the amputated tadpole 
is precisely equal to the mean density po, We can thus compute the entire con- 

tribution of a single tadpole to the propagator as a function of the mean density 
po. We shall see that the net effect is to modify the fermion propagator to the 

propagator of a fermion (at finite p) in a constant magnetic field proportional to 
the density. 

Using the Feynman rules described above each tadpole contributes an amount 

to the fermion propagator. This single tadpole contribution can be written in the 
suggestive form ieTiA where 

A; = -;~ij$po 

Notice that 4 is precisely the gauge potential one would obtain from a constant 
fictitious magnetic field B = ipo. 

The contribution of all the tadpoles to the fermion propagator is now computed 
by summing the geometric series of Figure 3. We call the resulting object the 
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tadpole-corrected propagator and we denote it by ST. The result of the calculation 

is 

ST = (s,-’ -ie+d$’ = [+‘(a, - ied,,) - m -&I--’ (6.7) 

where we have made the definition & = 0. This leads us to the important conclu- 
sion that the tadpole-corrected propagator ST is precisely the Green’s function for 

a free fermion in a constant magnetic field B = ipo and with chemical potential 
/J. We shall thus reorganize our perturbation expansion as follows. All propaga- 
tors will be fully tadpole-corrected propagators. The vertices will be the same 

vertices ss those for the basic theory, and, of course, no additional propagators are 
included. We shall call this “tadpole-corrected perturbation theory”. We shall be 
able to use this reorganized expansion to prove some very powerful results about 
the Chcrn-Simons theory. In fact for many quantities of interest only ontloop 
effects will contribute. 

The Fermion Propagator in a Constant Magnetic Field 

The fermion Green’s function in a constant magnetic field B is evaluated by 
choosing from among the many possible gauge potentials which are consistent 
with coulomb gauge. We discuss the propagator in an asymmetric gauge in which 

dpBz, &=O, &=O. The fermion propagator ST is simply the inverse of the 

operator p--m where B’p = &,-&A,. Thi s operator is inverted by using the 

relation: 

ST = [$ - ml-’ = @I + m)[@ - m)(pJ + Tn.)]-’ 

= (@ +m)[fi' --mm2 f ecqB]-' 
(‘34 

The propagator is thus found in two steps. First the operator Q = [@-nx-~eu38] 
is inverted by finding its eigenvalues and eigenfunctions. The operator t)+m is 
then applied to the resulting expression to obtain the propagator. 

The eigenfunctions Q for the operator Q, which are 2-component spinors, are 
found by fourier transforming in y and t: 

+(5y,t) = e -iwte--iP.y*(+,py,w) 

The operator Q when acting on this eigenfunction gives 

-[(w - i~)~ - a: + e2Ba(z + g)” + m* - eBu3] 

(fw 

The functions 5 are thus eigenfunctions of a harmonic oscillator with unit mass 
and frequency eB. More precisely for each normalized eigenfunction g!, of the 
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harmonic oscillator there are two eigenfunctions of Q given by 

and e-iwee-iP,Y ($+ %,) (6.11) 

with eigenvalues 

-[(w - ip)’ + (2n + l)eB + eB] 

respectively, where n is a nonnegative integer. If we set 

(6.12) 

d,, = [(w - ip)’ + 2neB + m2] 

Then these eigenvalues are simply equal to -d, and -r&,+1 respectively. 

Having found the eigenvalues the inverse of Q can now be written as 

$= 
1 

[S - Ina + ecrsq 

(6.13) 

(6.14) 

,-;w(t-t'),-;P,(Y-Y')~~(~ + z)g"*(" + S)} 

The tadpole-corrected propagator ST is then given by 

‘T = [ri, --ml-’ = (fj tm)Q-’ (6.15) 

Recall the definition of B as B = 5~0. The propagator is thus a function 

of both po and ~1. but the density po depends itself on p. The next step is 

then to find the relationship between po and /.L. This is done perturbatively using 
the tadpole-corrected propagator ST. The lowest order contribution to the mean 

density ps is the one loop diagram of Figure 4. higher order corrections to the 
fermion propagator will be taken into account separately and will be higher order 

in our expansion. We shall see in chapter 8 that due to a nonrenormalization 
theorem the result of this lowest order calculation of the density is, in fact, an 
exact result. The strategy is to first compute pa for fixed p and B. Having done 

this we can use the fact that B itself depends on pu to find ~0 as a function of p. 
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Calculation of the Density 

The calculation of po proceeds as follows: 

PO = -c ++(~)I+) > = -wwST(~,~)l 

=fi/g/$ eB llifn(z + %)I2 [-i(w - ip)( 1 

“=I? 
-&+-+(- 
d &+I ..~_ 

(6.16) 
The integral over p, can now be done since the functions ‘I!, are normalized eigen- 
functions for the harmonic oscillator. This integral simply yields a factor eB. Thus 

PO = z!E!!~ J~i(--i~)(~+d)-im(~-~)l (6-17) 
2a 

The integrals over w are now done using contour integral techniques. The integral 

J’ dw{$} is standard, and is performed by closing the contour slang a semicircle * 
of very large radius in the complex plane either above or below the real axis. The 

integral J dw{v) can be done using a cutoff regulator. It is convergent despite 

initial appearances. It is evaluated by shifting the contour from the real axis to 

the line -co + ip < w < co + ip. Th e vertical parts of the contour at infinity 

vanish, and the resulting integral over the new contour vanishes by antisymmetry. 

All that remains are possible poles in the region 0 < Im(w) < ~1. The results are 

m 

I 

du 
-m (w - +)2 + zneB + ,2 = Jzne; + ,2 @(- - Ipi) 

m 

--m &(w - ip)LZeB + m2 J = jp(lp] - J2neB-tmz) 
(6.18) 

Using these results we obtain the final result for the density as a function of p at 
iixed B: 

Po=$g[ @(l/L - &iizG2) + O(l/.&l - J2oeg+mz 
fl=O 1 

+ $+4 - /PI) (6.19) 

where Int stands for the integer part of its argument. 
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Note that po does not vanish when p=O. To understand this point first note 

that this is not the density for the anyon gas as a function of /I since we have not 

yet applied the constraint B = ipo. It is, instead the density for the fermion gas 

in a constant magnetic field. Since the presence of the magnetic field breaks the 

charge conjugation invariance of the system there is no guarantee that the mean 

density will vanish. In fact, for any given p the value of the mean density i.e. the 

expectation value of $+(r)$( ) T 1s re u arization dependent. For p = 0 it is precisely g 1 
equal to the spectral asymmetry of the Dirac operator. This spectral asymmetry 

does not vanish for a single massive fermion in 2 f 1 dimensions when an ultraviolet 

cutoff is used as a regulator. This nonvanishing of po at p = 0 is closely related 

to a similar ambiguity in the p = 0 renormalization of the Chern-Simons term for 

this theory?’ In fact if Pauli-Villars regularization were used the density would 
vanish and the Chern-Simons term would not renormalize at p = 0. Even though 

po is nonzero at /A = 0 it is clearly this po which is related to B via the relation 

B = gpo. However, in order to get a physical picture of what is going on, it is useful 
to consider the “physical” density ppa = PO(~)--p&=0). pr,a is the expectation 
value of the properly renormalized density operator. 

In Figure 5 pr,a is plotted versus p for fixed (positive) E when the mass m>O. 
It must be emphasized that this is a plot of p as a function of p forfized B. The self 
consistency condition which is required by the definition of 23 in terms of po has not 
yet been imposed. When the density is not an integer multiple of eB/27r the density 
can increase with no cost in chemical potential. Thus a new particle can be added 
to the system at no cost in energy. This corresponds to the filling of a Landau 
level. When the density reaches an integer multiple of eB/2r, the level is filled and 
a discrete jump in chemical potential is required before the next level can be filled. 
The asymmetry between positive and negative p reflects the spectral asymmetry of 
the theory. Evidently the two signs of p correspond to filling the Landau levels with 
particles and with antiparticles which have opposite spin. We see from Figure 5 
that for p>O one requires a chemical potential p2=m2+2eB to begin filling the first 
Landau level. For p<O the spins point in the opposite direction. The interaction 
energy of the spin with the magnetic field t3 precisely cancels its orbital energy in 
the first Landau level leading to a zero energy mode. Thus one begins to fill the 

first Landau level at p = --m. Figure 5 thus corresponds precisely to the usual 
filling of Landau levels which occurs for fermions in a magnetic field. 

The definition of B = ipo can now be used to find po as a function of p for any 
given value of 19 (which is assumed positive). If, as we shall assume, e, B and B are 

positive, then po will also be positive. Let us consider the case m>O in which case 
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pa = pPh t ef3/47r. Suppose po is fixed at some physical value (say by fixing pPh). 

We see from Figure 5 that it is useful to write pa as eB/4x plus an integer number 
of steps of magnitude eB/2n plus some remainder. 

PO = g[N + ; +r]; O<y<l 

where N is an integer. Now po is also equal to :B. Thus 

2ne - 
L4 

=N+$ fy 

(6.20) 

(6.21) 

Note that 7 is determined entirely by S/e ‘. Thus fixing the Chern-Simons coef- 

ficient simply tells us how many Landau levels are filled and what fraction of the 
first unfilled level is occupied. The values of N and 7 are determined entirely from 
the values of e and 0. 

The resulting value of /A can now be determined from Figure 5. When 7 # 0 
(i.e. when there is an unfilled Landau level) the value of p is uniquely determined 
to be 

2*Po 
~‘=n~+W+l)~+; +7 =m2f2(N+1)- 

N+7 
(6.22) 

or 

ph=Pa-maN+7 
P 47r N+l 

when 7 # 0’. On the other hand, when 7=0 and a Landau level is filled the value 

of /.A is ambiguous with 

m2t2N 2rPph 
-y<pz<m2+2(N+1)~ (6.24) 

We would expect that all physical quantities will turn out to be independent of 

which value of p is chosen in this range. 

t Note that this differs only slightly from the result for fermions for which p = (p2 - m2)/4x. 
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First note that the desired result II,&q=O)& i.e. the vanishing of the renor- 
malised Chern-Simons term does not occur at zero density!“‘It may seem strange 

that OR vanishes for any nonzero density but not in the zero density limit. This 
is because the zero density limit of this theory is extremely singular since for any 
finite density there are a fixed number of occupied Landau levels. This number 
depends only on B but not on the density. At precisely zero density there are of 

course no levels occupied. 

The strategy for showing that II,=8 is as follows: One first calculates II, in the 
one-loop tadpole-corrected perturbation theory keeping both /J and E = (e/fQ, 
as variables. One then inserts the appropriate value for p which was derived above 
eqn. (6.24). to obtain our desired result. Finally one invokes a non-renormalization 
theorem which is discussed in chapter 8 to show that the result holds to all orders 
in tadpole-corrected perturbation theory. 

The detailed calculation of II, is given in ref. [23]. The final expression for 
&&j was found to be 

&p-;g n=O J - 2) + i(w - ip)(i + $1 +1 (6.26) 
- i4neB (w - ilLI 

[(w - ip)2 + M(n)+ 

where M(n)’ = 2neB+m2. Fortunately there is an interesting theorem which 

related II, to p which greatly simplifies the proof of the result. To any order 

in tadpole-corrected perturbation theory there is a general relation between the 
diagrams which contribute to II&d(+) and those which contribute to p~(p,B). 

We begin by considering an arbitrary diagram which contributes to po(p, f3). We 

now take 6/SB at fixed p of any such diagram. This has the effect of removing 

precisely one tadpole insertion and replacing it by ieyiEijaj/V2 which is applied to 

the graph and the result is evaluated at q=O. This is shown pictorially in Figure 6. 

The resulting graph is one-particle-irreducible in terms of tadpole-corrected lines 
since clearly all diagrams for po are one-particle-irreducible. It is thus related to 
the vacuum polarization Iloj. In fact 

Now the odd part of II goes to zero linearly with q as q goes to zero whereas the 
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Notice that the condition of having precisely N filled Landau levels occurs when 
2npPh/ef3 = N. This then implies that (2n#/e”)-i = N. Naively we might have 
expected the ‘i ’ to be missing. The reason for the presence of this term is that 
there is a renormalization of the Chern-Simons coefficient in this theory at .zero 
density which occurs in oneloop and which is not renormalized by higher loops 

The renormalized Chern-Simons term at zero density has been calculated in the 
literature!ll”“‘O’ It is given by 0~ = 6’-(m/lm/)(e2/41r) when cutoff regularizstion 
is used. Although this relationship is regularization dependent, it is only the 
renormaliaed CS term which is physical. It is in fact this renormalized Chern- 
Simons term at zero density which determines the statistics of the anyons. Our 

condition for having N filled levels now becomes (for n>O) 

which corresponds to a statistics parameter *(l-l/N) where N is an integer. Such 
a statistics parameter corresponds to the horizontal parts of Figure 5 whereas a 

non-integer N corresponds to its vertical parts. It must be emphasized that the 6~ 
in equation (6.25) is the renormalized value of 0 at zero density. We shall often 

simply call in 6 to avoid confusion with the finite density renormalized 9 which we 

have not yet computed. 

The Renormalized Chern-Simons Coefficient 

We are now ready to discuss the calculation of the renormalized Chern-Simons 

coefficient. The first step is to consider the (one-particle-irreducible) vacuum 

polarization II,,. As discussed previously, in this parity non-invariant theory in 

three dimensions, II,,” can be split up into an even and an odd part: 

J&(q) = q,(q) + ~pdKdd(cl) 

where lY is symmetric under interchange of p and Y. Recall that gauge invariance 
requires the odd part of II to have the above covariant form even at finite density 
in which case Lorents invariance is lost. Our goal is to show that the renormalized 

Chern-Simons coefficient 6’~ at noneero density vanishes. This turns out not to 
be true for arbitrary values of e&=0) . We shall see that OR at finite density 
vanishes if and only if N = 2d~(p=O)/ e2 is an integer. As discussed in chapter 5 
(see equation (5.6)) 6~ is defined as @R = 0 - IL, with II, = II,dd(q=O). Thus the 
condition for the vanishing of 8~ is that II, = 6’. We now proceed to discuss this 
result. 

32 



even part of II vanishes quadratically’. Thus 

(6.28) 

Thus lIv& at q=O is simply evaluated by differentiating po with respect to B 
at fixed p. We can do this either via eqn. (6.19) or more simply from Figure 5. 

Note that on the vertical sections (i.e. when (p2-m2)/2ef3 is an integer) the 

above derivative is divergent. It is only convergent on the horizontal sections 

which correspond to case of completely filled Landau levels. In this case PO/E is 
independent of I3 . Thus 6pa/SE = po/I3. But po is related to B via the tadpole 
relation pa = $B. Thus 

noddtq = 0) = $$J = 8 

This is the result which was claimed above. It implies that the one loop (tadpole- 
improved) renormalized Chern-Simons term vanishes, and thus there is pole in the 

current-current correlation for this theory. It occurs if and only if the zero density 
renormalized CS coefficient 0~ is such that some integer number N of Landau levels 

are precisely tilled. As discussed above eqn. (6.25) this occurs (for m>O) when 

2d~/e’=N. 

In chapter 8 we show that these results hold to all orders in perturbation theory. 

This is done by extending previous nonrenormalization theorems at zero density 

to the case of finite density. It can be seen from the above discussion that proving 

a nonrenormalization theorem for pn is sufficient since the corresponding result for 
&,dd can be derived as a its consequence. 

Summarizing this section, we have shown that in the one loop approximation, 
when 2nt9/e2 is an integer N so that N Landau levels are tilled, the renormalized 

Chern-Simona term at nonzero density vanishes. This then implies that there is a 
gapless excitation coupled to the current. This, combined with the presence of a 
gap in the fermion spectrum due to the filled Landau levels results in superfluidity 
of the anyonic system. In chapter 8 this result is shown to hold to any finite order 
in perturbation theory. 

t This, of course assumea that there are no singularities in the even part of the vacuum 
polarisation as the external momentum tends to zero. This will be valid for the case of 
filled Landau levels since the spectrum will have a gap. 
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6.4. SCWWINGER'S PROPERTIME INTEGRAL METHOD 

Another field theoretical method to derive the renormalization of the CS term 

uses Schwinger’s proper time integral?’ The reason we present this computation 

here is two-fold: as a confirmation of the Feynmsn diagrams results of the last 
section, and as a possible framework to handle more complicated models where, 

e.g., 8iE # 0. 

The tadpole-corrected fermion propagator was shown in the previous section to 

be equivalent to that of a fermion in a constant fictitious magnetic field, which is de- 
fined via the density: E=ep/B. We now calculate this propagator using Schwinger’s 
proper time integral: 

cs 

S~(z,z’) =< Z 
J 

dseeH’(p + m)lz’ > (6.30) 

0 

where I?=-@ JI )=D” + eEm. We differ from the original calculation WI . m using 

a Euclidean metric and working in three dimensions. The matrix element of the 

operator U(a) = eea* is thus given”” by 

< +-+)I+’ ’ = 
C(z, 4,-L(-i.),-q 

*J/2 
(6.31) 

x ,-f(z-.‘],[eFcot(ePl)l”(r-z’). 

where C(n - z’) = &eilmY dPAJE) and eeL(-“) = &I. Expanding the 

various factors in (6.31) we get the following expression for the tadpole-corrected 

fermion propagator: 

eE is: W’440 *da S,(z,z') = -e J 
,--In'8 -& 

8n312 
0 

a1/2sinh( eEs)’ ” 

x ,-fcEcot(csJ)(~-z’)io’ x [G1 + Goo3 + Gig;] 

where Gr, Go and G’ are given by 

G1 = mcoah(eZ38) + $(t - t’)sinh(eBa) 

Go = -mainh(eEs) - ;(t - t’)cosh(eBs) 

(6.32) 

(6.33) 

G’ = _ (“i - z’i) 

2smh(eEs) 
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Note that here we supressed the chemical potential. In the following computations 
before integrating over the frequency we first analytically continue w+ w - ip. 

The next task is to calculate the fermion density. This is achieved by substi- 
tuting ST(Z-2’) from (6.33) into 

PO = -T+foST(z, z)l (6.34) 

We have to integrate over d’(z-z’)S(zi-z:) and then over d(t--t’)b(t-t’). The last 

dw delta function is written as S(t-t’)=jTw T;e ‘w(r-*‘). After the first integration we 
find 

*Jd(t -p) 7 $$W-4 Jddg p = -g*3/2 

x e-[-m - &(f - t’)(coth(eBs)] 
2eB -du 

=- 
J 

-e-+‘+w’)[m + iwcoth(eBs)] 
4x2 2n 

(6.35) 

If we now write 

coth(eB8) = : T II:::: = (1 + eeaefl*) 2 e-2neB’ 
V&=0 

(6.36), 

substitute it into (6.35) and replace w with w-ip we find exactly the same expres- 
sion as the one given in eqn. (6.19). 

The third step is to calculate the odd part of the vacuum polarization II,,. We 
substitute (6.32) into II,,,(z,y) = e’T~[r~S,(z,y)r,S~(y,r)] and we extract the 
term proportional to l ijw. The resulting term is: 

2ie*(eB)2 
ml) = @*S E;j JpPJpr J~3~l~i*z+~~-~~z1~~~~ 

0 

K & - 773*)8dnh[eS(sI - sz)] - 7+& - &)cosh[cB(s, - 3z)]]. 

(6.37) 
Now we do the z and CC’ integrations, the p integration, substitute kikj = 9, and 
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perform the t and t’ integrations. The result is: 

ie2( eB) 
~~(O,qo) = 4r2 l ij/bfsJ”$ 0 ,m’(4+d) 

x sinh(eBsl)sinh(eBsz) 
e-w’*l e-(w-qo)=r, 

[[-(‘+ - qo) - +inh[eB(sl - a)] - imqocosh[eB(sl - sz)]] . (6.33) 

Replacing hyperbolic trignometric functions with sums and integrating over the 

proper time variables s1 and sr one gets the same result as given in eqn. (6.26). 

6.5. THE RANDOM PHASE APPROXIMATION 

The massless pole in the current-current correlator was discovered in the orig- 

inal work of Fetter, Hanna and Laughlin!’ The method used in that work was the 

random phase approximation (RPA). The calculation was repeated and extended 

in the work of Chen, Halperin, Wilczek and Witten!‘s’Here we summarize this 

approach following the paper of Chen et al. 

A non-relativistic anyonic gas is described by the following second quantized 

hamiltonian 

H = J d2r~t~~p + a(r)lQ 

where rE‘ is a spinless fermionic field. a is the gauge field which is expressed in 
terms of the density of particles using Gauss’s law in the Coulomb gauge (see 
section (6.1)) as follows: 

&(F) = Zi + $ J e..(p-rf j dZ*’ ‘;p _ + ,,’ MF’) -PI (6.40) 

with P(T) = qtQ(r). (Note that the charge e is absorbed into a in this section.) 
In the above the gauge field has been decomposed into a background field Ei = 
(zp/iV)eijrj and a fluctuating field ai - 7i;. The system of fermions with density jj 
in the presence of the field E is taken as the unperturbed “reference” system and 
the interaction hamiltonian is rewritten as 
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HI = H - Hr, = HI + Hs 

HI = ; d% 
I J 

tij(T - d)j 
d’*‘ji(T) iT _ r,,2 b - ia41 

where the currents are given by: j;(7) = ‘J!‘(,)i(pi + &)‘J!(T). It is argued”*‘that 
the Coulomb potential which results from the substitution of p for P(T) in Ha is 
important in two aspects: (i) The long range attraction between particles and holes 
is ultimately responsible for the gapless mode which can be viewed as a zero-mass 

bound state. (ii) The repulsion between “vortices” which are intimately related to 
the fermionsis responsible for the anyonic superconductivity being type II. Neither 
of these statements are actually proven in ref. [15]. 

Neglecting the fluctuating part of P(T) in Hz the interaction hamiltonian yields 
a two-body interaction term which can be rewritten as: 

HI=; d’r J J d’r’j,(r)V~‘,,(*,r’)j,(r’), (6.42) 

where jo = p(r)-7 and where the Fourier transform of VP, is given by: 

VI(P) = J d%‘V we ;q(,-,‘) _ 23r 
-Nmg 

(6.43) 

Next, one defines the current-current correlator zPy = 4 < T[j,(l)j,(2)] >, 

denoting the unperturbed correlator by kiY. One finds that 

K = (1 - jpv)-‘io (6.44) 

The explicit computation of 2:” is presented in the appendix of ref.[l5]. We briefly 

summarize it here. The electron wave function q is expanded in terms of Landau 
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wave functions eqn. (6.11) 

qT,t) = go J g J me-%-‘p.“V, (Y + 2) (6.45) 

following the conventions of ref.[l5] where a. = -tieB, aY = 0 rather then those 

of the previous section. Inserting now the unperturbed currents expressed in terms 
of these wave functions one gets a complicated expression for g&‘ls’. After some 

straightforward but tedious algebra the following simplified form is derived, 

R& = 

& = C”‘C”= ” 
m-l e-xx”-‘-l[L;“-‘(yq]2 

(6.46) 

1-o m “m!(;)a - (m - qa 

where X = &, wC = c and L;“-’ is are Laguerre polynomials. Using the same 

method for calculating the other components one gets 

2x0 WC0 -iqw,c1 

qwco (d-so -lop,) -iqww,c1 

iqwJ1 iww,C1 +a 

(6.47) 

Approximate expressions for C; are given below. The e.m. response function K& 

is defined by the two point function of the true currents J,, = qt(p,+a,‘)q and 
not the one used in eqn. (6.41). KcY can be deduced approximately from %!,” as 

follows: K;” = (l+ijut)kP,(l+Fu), where -ieu is a matrix with all zeros apart 

from 1 in the (0,~) component. For the “physically” relevant response function 
one has to add also the contribution from the contact term ( the o2 term in the 
action). Thus, finally the response function reads 

iqs 

iw2 

-iw3 wC(E - C1 + Ca + det) 

(6.48) 

where Z = -% - c: + CoCa + Co and det = 1 - Co + 2~~ + ~2: - c~&. 
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Three approximation are involved in the derivation of the response function: 

(i) in the interaction hamiltonian, (ii) in the inverse propagator 2-l and (iii) in the 
passage from I? to K'. These approximations are essentially replacing the actual 
density with the mean density and thus is justified in the large N limit. For small 

q and W, Ei = -1 - (2)” + TiNg with 7; = (i,:, 1) for i = O,l, 2 respectively. 

Inserting these expressions into eqn.(6.48) one finds that det = -(z)” + Nz. It 

is therefore evident that the current-current correlator has a massless pole, namely, 

a pole at (E)” = Ng. 

6.6. THE "INHOMOGENEOUS EXPANSION TECHNIQUE" 

Panigrahi, Ray and Sakita’“’ calculate the effective action &:,ff from the cur- 
rents which are derived using a perturbation method, the “inhomogeneity expan- 

sion technique”. Starting with the non-relativistic an&g of eqns. (4.4)-(4.5) they 

write for the vacuum expectation values of the currents 

< J&) >= 6L.ff 6a@ = & < Zl@#$ + + > (6.49) 

where ?Q = im, p; = pi-eoi(2) and p = -po+ao(5)+2-~. The currents are reg- 
ulated using the Pauli-Villars regularization. The method includes expanding ~(5) 
around a,(z), translating z to the origin and invoking unitary transformations to 

express the currents in terms of field strengths as far as possible. One then finds 
that the denominator can be expanded around the hamiltonian of a two dimen- 

sional electron in a constant magnetic field, namely: -?, = -&-&+ P.&+AifJi+&q 
2m ) 

with & = 9 + & - /J + ao, where 30 = ~~‘+(p*-~~~)‘l and where A,, are pertur- 
bations of the gauge fields around the constan?magn:tic field. The expectation 
values eqn. (6.49) are shifted to \z = 0 >. As was shown already in section 6.1 
the basic commutation relation of the Landau problem can be expressed in terms 

. 
of creation and annihilation operators of a harmonic oscillator. With a E ?!=z% 

Jz ’ 
and center of mass coordinates i = 5 - 3 and ? = c + 3, one finds that 

[li,+i] = [+, +i] = [ii, 201 = [?, iI01 = 0 (6.50) 

In the basis In,X >= In > /X > where In > is the occupation number and i: is 
diagonal in (z >, using some calculational tricks it was found that to lowest order 
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in the perturbation around PO the expectation values of the currents are: 

2 2+j < Ji >= --$[t;jfOj - XeijSB] 

and a similar expression for < Jo >. ?(ef3,p,m) is a staircase function given in 
Fig 4. It is now straightforward to obtain the effective action: 

J&f(U) = -;soB + 
2 2m y 

-qw + +xeg&l 
8mn 

(6.52) 

for positive eE, and for negative et3 the first and third terms flips their signs. 
The fermi&c integration, thus, produced an effective CS term which adds to the 
tree level CS term. For electromagnetically interacting anyons, namely fermions 
coupled to a fictitious CS term and a Maxwell term, an effective action &ff(a,, A,) 
is derived following the same lines as above. The resulting expression is that of 

eqn.(6.52) where Z?, & and ao are replaced with B + B , & + E and ao + A0 
respectively. Leaving only the CS terms (lowest powers of derivatives) one finds 
that the free energy has a minimum at zero magnetic field B = 0, namely, a 
Meissner effect. The minimum corresponds to a cancellation between the tree 
level and the induced CS terms. It is thus the same result as the criterion of 

superconductivity that was presented in chapter 5. 

The existence of a massless pole in the current-current correlator is shown”“using 

a saddle point approximation. Starting with the partition function 6(B) l DE.z&~(~) 
with 

Serf = L J d%[EAo - g + ~[EiEi - 2cij%BEi + (~n)2] (6.53) 
i7 

Constant B = Eo extremizes the partition function so that for the fluctuating field 

8 one has 

z ,6(B)$tf(EP) 
I 

~&$.f,(@ 

jcff(ij) = - &- /d’rl’+ $$,, 
(6.54) 

It is thus apparent that the resealed fluctuation field -$==&L?(qw) has a propagator 

2 corresponding to a massless mode (q’ + gw )- I. Of course this is the same result 

as that of the RPA calculation. 
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7. THE PHYSICAL PICTURE OF ANYON SUPERCONDUCTORS 

There is a simple physical picture of anyon superfluidity in the fermionic CS 

description, which makes intuitive all of its essential properties. This picture was 
described in detail by Fradkinj”’ based upon work of previous authors!“‘1*“0’6” 

The importance of this picture is that it makes clear why the Goldstone collective 
mode is essential for anyon superconductivity, and why a pairing mechanism and 
a local order parameter are not needed to exhibit superfluid and superconducting 
behavior. 

As we have seen, the anyon gas, condensed to its superfluid phase, can be 
thought of as a system of planar fermions moving in a uniform fictitious magnetic 

field B=epo/B perpendicular to the plane. The first N Landau bands are completely 
filled, and there is an energy gap AE=eB/m (in the nonrelativistic limit) to the first 
un!illed level. The presence of an energy gap is familiar from BCS superconductors. 
Indeed it plays a similar role here, that of stabilizing the superfluid state against 
fluctuations. However, the energy gap, while necessary, is not sufficient to produce 
a superfluid. This is obvious when one realizes that insulators all have gaps in 
their electron spectra and they are certainly not superconductors. Furthermore the 

system just described is identical to the integer quantum Hall (IQH) system/l’ save 
only that for IQH the magnetic field is a real one and is independent of the fermion 
density. The IQH system, of course, is not a superfluid. Although it supports 

dissipationless currents, it does not exhibit a Meissner effect. This is because 
the fermion fluid in this case is incompmssible, since the charged fermions resist 

crossing real magnetic field lines. Compressibility of the fermi fluid, in addition to 
the gap, is an essential ingredient for superfluidity. 

Why then, do we have a compressible fermion system in the CS description 

of anyons, but an incompressible one for the IQH system? The difference arises 

precisely because, for the anyon system, the fictitious magnetic field is tied to the 

fermion density by the linear relation B=epo/B. If, in some region, we add some 

fermions to this system, both the density and the fictitious field 23 are increased. 

The increase of B in turn implies an increase in the Landau band degeneracies, 
which is just enough to accommodate the added fermions in the (previously full) 

first N levels provided they are added in multiples of N. This is the origin of a 

gapless mode, and the compressibility for this fermi system. 

Let us examine this argument in more detail!“’ Fermions in Landau levels 

can be regarded in a classical picture as moving in Landau orbits, which are cir- 
cles of radii equal to the cyclotron radius r,=nv/eB, which can also be written 
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rc=n/+j& where n labels the Landau levels 1,. . .N. Imagine then a set of N 
filled Landau orbits, with radii rc, and centers equally spaced to fill up the plane. 
Now imagine a density fluctuation, whereby a fermion is removed from an orbit 
centered around one point xs, and placed in a new orbit around a different point 
x1. At the point xs the density has now decreased, B has also decnamd, and thus 
the cyclotron radius F= has increased. Conversely, at the point x1 the density has 
now increased, L3 has also increased, and so the orbit radius is decrea.wd. Thus 
we have a classical picture of a wave in which the fermions move on closed orbits 
whose radii execute an oscillatory motion as the wave goes by. The motion of the 
fermions is tmnsverse to the direction of propagation of the wave. This wave is 
nothing but a classical description of the gapless collective mode; in other words, 
this wave is the Goldstone mode. 

An important feature of the simple physical picture presented above is the ab- 
sence of anyon pairing in the argument leading to the gapless mode. This is inter- 

esting since Laughlin’s original arguments “I for anyon superconductivity involved 
binding pairs of semion quasiparticles to obtain a bosonic condensate, analogous 
to the Cooper effect in BCS superconductivity. Several authors”“““’ have given 

arguments that, for 7=7/N type anyons, it is energetically favorable to ‘pair N- 
anyon states, and that this results in a bosonic condensate which corresponds to 
the superconducting phase of the anyon gas. In any case it seems quite likely that 
anyon pairing does occur in this system. Nevertheless, apyon pairing, unlike the 

gap or the Goldstone mode, is not a necessary feature of anyonic superfluidity or 
superconductivity. Note that if anyon pairing is present, the size of such anyon 

‘pairs’ is comparable to the interparticle separation!“] In ordinary BCS theory, we 

know that a mean field description works well due to the large size of the Cooper 
pairs. In the case of anyon superconductors we expect mean field theory to work 

as well but in this case the mean field description is ezact!14 Another way of seeing 

this is to note that pairing in a BCS superconductor is really a statement about 

pairwise correlations in momentum space, namely, that there is a finite probability 

for pairs of particles to have zero total momentum. P’ This feature is exhibited in 
the Landau level picture presented above. The Landau system is a coherent state, 

which means that all the fermions rotate in phase at the same cycIotron frequency 
w,=eB/m. This implies that the average distance between any pair of fermions is 
constant. The resulting pairwise correlations are the true anyon analog of explicit 
bound state pairing in BCS systems. Fradkin points out”” that this coherent state 
property is essentially a kinematic effect, and in this regard anyon superconduc- 
tivity strongly resembles the Schwinger mechanism in l-t-l dimensional QED with 
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massless fermions. 

It is also illuminating to compare and contrast anyon superfluids with fractional 
quantum Hall (FQH) systems. The fractional systems differ from the IQH in that 

the filling factor of Landau bands is a rational fraction Y rather than an integer 

N. The low energy excitation spectrum, nonetheless, possesses a finite gap, and 

the FQH systems support dissipationless current flow. Furthermore, in the FQH 

system, the density, magnetic field, and filling fraction Y, are observed to obey the 

same relationship as po, B, and N in our anyon superfluid! So, are FQH systems 

super&ids? No, they are not!” The FQH f ermion fluid is incompressible, and the 

low energy magnetophonons have nonzero mass, i.e., there is no Goldstone mode. 
The problem, of course, is that in the FQH system the magnetic field is a real 

external field, not a fictitious field. Thus, for FQH, B can be regarded as fixed, 
and it is the tilling fraction v that adjusts with the density. For anyons, N is fixed 

by the anyon statistics, and it is the fictitious B which adjusts with the density. 

The FQH system supports finite energy vortex-like excitations that carry frac- 
tional charge. These quasiparticles are, in fact, anyons. Thus one may ask whether 
a gas of FQH anyonic quasiparticles is a superconductor. The answer is no. Un- 
like the free anyon gas, anyons in a FQH system are subject to a strong external 
magnetic field. The result is that this anyon system is incompressible, just like 
the FQH ground state. The FQH system, in fact, defines an entire hierarchy of 
incompressible quantum fluids. 

Neither the anyon superfluid or the FQH system has conventional spontaneous 
symmetry-breaking, and neither possesses a local order parameter. These prop- 
erties are well-known for FQH/,,-“’ for which explicit nonlocal order parameters 

have been constructed. For the anyon superfluid, Chen et al have argued”*‘that a 
similar nonlocal order parameter occurs, and its origin can be traced to the non- 
commutativity of the translation generators in the effective CS description. This 
phenomena is discussed in the next section. Halperin et a.l”0’ have proposed non- 
local order parameters for anyon superconductors which strongly resemble those 
employed in the FQH system. 

To summarize, anyon superfluids and superconductors can be regarded as com- 
pressible cousins of quantum Hall systems. Fradkin”” has extended this analysis 

to show that, when the anyon statistics takes values other than the x/N, the free 
anyon gas is a novel kind of incompressible quantum Hall system. 

Even this is not the end of the story: as we will see in the next chapter, there is 

yet another remarkable correspondence, this between the CS nonrenormalization 
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theorem and the topological quantization of the quantum Hall conductance. 

7.7. SPONTANEOUS BREAKING OF AN ALGEBRA 

The origin of the massless mode in the current-current correlator and hence 
the superfluidity of an anyon gas according to ref. [15] is the spontaneous break- 
ing of the commutation relation of the spatial translation generators, or in their 
terminology “spontaneous fact violation”. In the phenomenological description of 

the system, based on quasiparticles and quasiholes, the momentum operators do 
not commute. In fact the whole Poincare algebra is not preserved. These models 
are constructed from some matter fields coupled to a background gauge fields. It is 
straightforward to check that in this case classically the energy momentum tensor 
of the matter is not conserved: 

a”T,, = JpF,,y, (7.1) 

where F,,” is the field strength and J,, is the current coupled to the background 

U(1) gauge field . Moreover upon canonically quantizing the system one finds”” 

the following commutation relations for the normal ordered momentum and the 

hamiltonian: 

[Pi, Pj] = J dz~d2y[T~i(~),T~j(y)] = ih / @tJoFij 

[R,H] = J d’+d’y[Toi(r),Too(y)] = ih 
I 

d’+JkFki 
(7.2) 

The rest of the Poincark algebra is modified in a similar way. The case of a constant 

magnetic field a,Fij = 0 is special. In this case one can IW use modified momentum 

operators pi given by 

Pi = Pi + 
I 

d’rJoFij+’ (7.3) 

in such a way that the momentum commutes with the hamiltonian, and is thus 
conserved quantum mechanically, but the first equation in (7.2) still holds (with a 
change of sign): [pi, i;] = --itLQFij. The symmetry of a system of quasiparticles 
coupled to a constant electromagnetic field, is generated by the same number of 
generators as in the underlying theory, but with an “anomalous” algebra. For that 
reason the phenomenon is referred to as the spontaneous breaking of the algebra 
rather then spontaneous symmetry breaking. 
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For a dynamical gauge field, instead of a gauge background, the situation is 
completely different, and as expected the Poincare algebra is restored. When a 

Maxwell term is added the energy-momentum tensor T$il + T,$r) is classically 

conserved. The algebra of Pi = Pi"' + P,!"' on physical states is given now by: 

[Pi,PjI =ih J ddr[(Jo+8bEL)Fij] = 0 

[Pi,H] =ih ~Q(J,+~~~E~)E~] = 0 J 
(7.4) 

where the Gauss law of the combined system Jo + &E’ = 0 was used. If instead of 

a Maxwell term a CS term is invoked or added to the former, the Poincare algebra 

is also restored!“’ 

The connection between the restoration of the original algebra and the existence 

of a “Goldstone boson” can now be clarified. In the case with no CS term, we can 

define a new field which is related to the gauge fields by F+ = E+,@@, and 

therefore 

LA = -;fpvfi- = +Q+~‘@ 

The field @ is the L‘Goldstone Boson” discussed in ref. [15]. On the other hand 

a system which contains both the F2 and the CS terms, is solved by a canonical 
free massive field cp which is related to the electromagnetic fields in the following 
way: Ei = -e;j&,iaov -e&v, B = &WV where 6; = $$. The field p has a 

spin equal to 6/]0]. 

Thus the restoration of the PoincarC algebra at zero chemical potential may 
correspond to an addition of a “Goldstone mode”, but this is not the unique pos- 
sibility. In case that the complete effective action includes both a CS term and an 
F2 term , then what is added to the quasiparticle and quasihole modes is a mas- 
sive”“degree of freedom which has spin fl. Hence the appearance of the massless 
pole can not be attributed only to the restoration of the Poincare algebra. 

The phenomenon of “spontaneous fact violation” received a new interpretation 
by Wilczek in ref. [25] as a “spontaneous projectivization of an algebra”. The main 
point in this approach is that the realization of symmetries as unitary transforma- 
tions in the corresponding Hilbert space are only determined up to a phase. In 
case that this phase can not be shifted away one has a projective realization of 
the symmetry algebra. For a continuous symmetry, this leads to a modification 
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of the algebra. In ref. [25] it is argued that if the ground state is realized by a 

projective representation, one can repeat the arguments of the ordinary Nambu- 

Goldstone theorem to show the necessary existence of a massless mode. However 
this statement was not explicitly proven. 

~.THE NONRENORMALIZATIONTHEOREMAND 
THE STABILITY OF MEAN FIELD RESULTS. 

The simple physical picture of the anyon superfluid described in the previ- 
ous section relied on the mean field approximation where fermions exactly fdl N 
Landau levels. In this section we want to examine the validity of the mean field 
approximation as a starting point for the computation of anyon dynamics, and 
examine the stability of the mean field results to higher order corrections. We 
will see that, not only is the Landau level picture a valid starting point for anyon 
computations, but in addition the mean field derivation of the Goldstone mode 
becomes ezaet in the cases where N is an integer. This is due to a nonrenormaliza- 
tion theorem of finite density CS theory”” which holds (at zero temperature) for 
any integer N, and to sIl orders in perturbation theory. At the end of this chapter 
we briefly mention an attempt to understand nonperturbative effects in CS theory. 

Several authors”“““” have argued that the Landau level description of the 
anyon gas is inconsistent and/or unstable at the semiclassical level. The argument 

goes as follows. The finite anyon density generates a fictitious B field due to the 
CS field equation 

08 = ep (8.1) 

Thus a constant density generates a constant B which in turn induces the fcrmions 

to occupy Landau orbits. This Landau fermions constitute a current, which gen- 
erates a fictitious electric field & according to the other CS field equation 

P3.2) 

resulting in a kind of reverse Hall effect. Furthermore (the argument goes), the 
Lorentz force from this & field precisely cancels that from the B field. This is 

easily seen by noting”*‘that the CS term, since it is metric-independent, makes 
no contribution to the energy-momentum tensor; thus conservation of this tensor 
requires that the total CS force density vanishes. The argument concludes either 

that the Landau level description is inconsistentr’ or that consistency is restored 

by shifting the CS coupling to zero!“*” 
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The problem with this argument is that it assumes that the Landau level 

picture derives from the local field equation (8.1) while ignoring the effect of the 
second field equation (8.2). This is not the case, as we can see by a more careful 
analysis of the field equations. The basic point is that there is a fundamental 
dichotomy in CS theory between physics on small or large distance scales relative 
to the inverse CS mass. A good way to appreciate the importance of this dichotomy 
is to consider the effect of including a Maxwell term for the fictitious gauge field 
in addition to its CS term. Such .s term is generated in any case at one-loop level, 
and one can argue that it is more proper to include it from the start in writing 
an effective action for anyons. The addition of a Maxwell term considerably alters 
the local field equations. The fictitious photon becomes dynamical, and physics 

on small distance scales looks totally different. However, the & and B fields are 
exponentially dumped by the CS mass and thus are short-ranged. Thus physics on 
long distance scales is insensitive to the presence or absence of the Maxwell term. 

The Landau level picture arises from an analysis of the full set of field equations 
(with or without Maxwell contributions) on long distance scales. Specifically, one 

solves the full set of field equations for the fictitious vector potential a; and then 

takes the asymptotic form of the solution. The result is’“’ 

Q V~tan-'~ ai,zi -2nB ' 2 (8.3) 

where Q is the total charge. The mean field approximation is then the replacement 
of Q/r2 by the mean density po. We then have: 

a =-g!! D 8 ; 
ayzzPO 

a 

Thus on long distance scales, in the mean field approximation, we obtain Lan- 

dau levels. This analysis already takes into account both field equations and the 

vanishing of the CS force density. 

On the other hand, there is a possible problem with the Landau level picture, 

although it has nothing to do with the local field equations. The problem is that 
the cyclotron radius of the Landau orbits is not large compared to the inverse CS 
ms,ss scale, except when N is large. ‘“‘Thus one may worry that the Landau level 
description is a poor approximation to the real physics unless N is large. Since 
N=2 is the case of particular interest, it would be disappointing if corrections to 
the mean field approximation wash out the Landau level picture for small N. 
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There are several arguments “‘J”” that the existence of a Goldstone mode for 

N integer is immune to the effects of fluctuations about mean field theory. One 

argument appeals to the relation described above between the anyon superfluid 

and the integer quantum Hall system. As we have seen, the Goldstone mode arises 
from the vanishing of the effective CS mass for the fictitious gauge field. If higher 

order corrections generated a finite (there are no infinite renormalizations in CS 

theory““‘O’) nonzero value for the finite density renormalized CS coupling, then 

superfluidity would be lost. However this quantity is precisely analogous to the 

“‘*“’ IQH conductance gry . The IQH conductance can be expressed as a topologi- 

cal invariant, and thus takes quantized values which are completely insensitive to 

fluctuations, provided only that the Landau gap is preserved and the many-body 

ground state is nondegenerate!‘d”’ Furthermore this property is not dependent on 

the particular physical boundary conditions which apply at the boundary of the 

planar system. All of these statements can be taken over as implying the stability 

of the mean field anyon supeduid. The beauty of this argument is that applies 
equally to idealized anyon systems (as considered in this review) as well as realistic 

anyon systems. 

One can also show directly that the vanishing of the finite density renormalized 
CS coupling is unaffected by higher order radiative corrections in tadpole-corrected 
perturbation theory. This proof takes the form of a nonrenormalization theorem[“’ 
for finite density CS theory, which applies to p and II,&(o). This theorem is 
an extension of the nonrenormalization theorem of Coleman and Hilly*“’ which 
applies to IL&O) in the zero density case, to the case of finite density. 

Before attempting to extend the Coleman-Hill theorem, let us briefly review 
it. Consider the Euclidean n-photon effective vertex, at zero density, given by 
summing all graphs consisting of a single fermion loop with 7~ external photons 
attached. We denote this by: 

$).+ (h . . . k,) . 3. (8.5) 

All diagrams in vacuum perturbation theory which contribute to &,&j(o) can be 

constructed from the I’(“)‘s, by sewing together photon lines (see ref.[69] for de- 
tails). One set of contributions is obtained by sewing together all but two photon 

lines of a lY(“), and finding the piece of the resulting two-point function which 
is linear in the external momentum and antisymmetric in the vector indices. 

The remaining contributions are obtained by sewing together, in all possible one- 

photon-irreducible ways, two different l?(“)‘s, such that one external photon line 
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remains on each. These two types of contributions have the following form: 

lrnO c 
a 

- dk3 
-t ‘“Ask,, J 

n-l 

. . . d’cnea, . ..a. k;-k;k,;...;-xkt xcx I... Am(k,;...;kn) 
3 

a 
lime A-- 
k-10 w 8kx J 

dka . . . dZ2.. . rl”,!..(k; kz;. . .)I$) (-k; II;. . .)FC,,., . . . . . . (k; kz;. . .) 

(8.6) 

Now for any rtn) gauge invariance implies 

k”l?l:!. = 0 

Differentiating this expression gives 

r?.? + kp (ajaky r$.! = 0 

Provided that I?(“) is analytic as k + 0 this implies 

l-!“)(0;k2;k3;...) = 0 

(g-7) 

W) 

(8.9) 

Furthermore, if n > 2, so that kl and kz are independent variables, then 

I+/)(kl; kz;. . .) = O(klk2) (8.10) 

as kl, kz + 0. These relations imply that d contributions to &d,(O) of two-loop 

and higher order vanish. This is the Coleman-Hill nonrenormalization theorem. 

We now want to extend these arguments to the case of finite fermion den- 

sity. We thus define a finite density Euclidean n-photon effective vertex, given by 

summing all graphs consisting of a single tadpole-corrected fermion loop with 7~ 

external photons attached. Order by order in tadpole-cometed perturbation the- 
ory, the structure of the graphs which contribute to &,&j(O) is identical to the 
zero-density case. Furthermore, we can apply the same construction to obtain all 

the graphs contributing to p. These are obtained by sewing together all but one 
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external photon line of a I’cn), and have the form: 

J dks ...dk,,r$;..,a, $ kt) Xap..x,(ka; . . . ; kn) (8.11) 

Thus, to prove the desired nonrenormalization theorem for p and H,,,(O), it 

suffices to show that, for kl,kz -+ 0: 

I’!:’ (kl . . .) = O(kl), n>l 

r!Tf’(h,h,...) = O(klkz), n>2 
(8.12) 

By gauge invariance and the argument presented above, these relations are true 

provided that k --t 0 is in the region of analyticity of the I’(“). 

We prove the nonrenormalization theorem therefore by demonstrating the an- 

alyticity of the rtn) as k’ + 0 in the Euclidean region. This is obvious for the zero 

density system, since the physical (Minkowski) threshold for fermion-antifermion 
pairs begins at Isa = 4mz. At finite density, however, one must also worry about 

the production of fermion-hole pairs. In our case, since the l?“) are defined in 

tadpole-corrected perturbation theory, this corresponds to a (Minkowski) pho- 

ton being absorbed by a fermion in a Landau level, causing a transition to an 

unoccupied state. The Landau levels allow continuous values of momentum but 
are discretely spaced in energy (with spacing eU/m in the non-relativistic limit). 
Therefore, when we have N completely fdled Landau levels, physical singularities 
are absent for (Minkowski) b < eE/m. Thus as we approach k2 --t 0 from the 
Euclidean region the lJcn) are analytic, and the nonrenormalization theorem holds 
precisely for 8 = Ne2/2x. 

Note that for other values of 0 we obtain no definite conclusions; this is similar 
to the m = 0 case of the zero density system. For self-consistency, we should also 
note that the Goldstone pole, which is the end result of this analysis, does not 
appear in the individual 1PI diagrams of the l?“). 

The physical content of the finite density nonrenormalization theorem is that 
the spatially averaged mean density po is insensitive to local perturbations of the 

background fictitious gauge field. This can also be demonstrated directly by a 
topological argumentjll’ which shows that po is dependent only on the asymptotic 
behavior of the background field. This makes the connection between the non- 
renormalization theorem and the analogy to IQH quantization. 
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8.8, NON-PERTURBATIVE RENORMALIZATION OF THE CS TERM 

Morozov and Niemi’“’ discussed the effect of instantons on the renormalization 

of the CS term. The model they considered was a Euclidean three dimensional CP’ 

model with a Hopf-invariant term which when expressed in terms of the fictitious 

gauge fields take the form of a CS term: 

S(t,a,,) = i J d3r~D,~fS12 +iWS(a,,) (8.13) 

with Y’ a complex two-vector where 1z12 = 1 and a,, = i(S;a,ti - a&z;). It 

is well known that this model admits soliton configurations since q(S’) = Z, 

but in addition there should be also instantons related to the non-trivial Hopf 
homotopy II, = 2. The solitons are classified by the winding number, and 

the instantons, which have not yet been explicitly constructed, by the CS term. In 
four-dimensional QCD it was shown that instantons renormalize the strong CP 0 
term as 

(8.14) 

where M determines the scale. For decreasing M, 8(M) tends toward 0 mod 27r 
and hence it vanishes in the infrared. The authors of ref.[27] argued that since 
several instanton effects were dimension independent it was reasonable to expect 
that the same phenomenon existed also for the CS 0. This argument was further 
supported by the following calculation. They estimated the instanton and anti- 
instanton contributions to the effective action in the dilute gas approximation: 

& N pin(CZ)es’” + Po-jnes’-‘” (8.15) 

with the assumptions that Si, = So + ia9, pi”(o) = p(o) - CC’S(a), where Q and 
C are some parameters and for anti-instantons the sign between the two terms is 
switched. This yields a beta function of the form 

Provided the parameters in the last expression are non-trivial the renormalized CS 

term vanishes. Using topologically non-trivial configurations which do not solve 
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the equation of motion, they find that the matrix element < a,,a&nstantonlvac > 
is non-trivial. Hence when inserted back to the variation of the effective action, 

this implies that the parameters in eqn. (8.16) are indeed non-trivial. 

While this discussion of non-perturbative renormalization is clearly speculative, 
we cannot discount the notion that these or similar effects may be important for a 
fnll understanding of anyonic superconductivity. 

9. FINITE TEMPERATURE BEHAVIOR 

We have seen that a system of anyons at zero temperature is a superfluid if the 
anyons are neutral and a superconductor if the anyons are electrically charged. In 

this section we study the finite temperature behavior of these systems. The naive 
expectation is that the superfluidity and superconductivity of these systems should 
persist, at least for small temperatures. In fact since at zero temperature there 

is a massless UGoldstone” mode in the neutral system, at finite temperature we 

might expect this mode to be thermally occupied, resulting in both a normal and a 

superfluid component to the system as is usual for superfluids and superconductors. 

Furthermore, since anyonic systems are 2+1 dimensional, we expect any symmetry 

breaking which may be present at 2’ = 0 to disappear at finite temperature. In 

fact if such a symmetry exists then even though we expect the massless mode to 
remain massless at T # 0 the correlations of any order parameter would vanish 

as a power of the distance as occurs in two dimensional models such as the x-y 
model:“’ and as is usually referred to as Kosterlia-Thouless behavior. In analogy 

with these two dimensional models we might, naively, expect a phase transition 
at some temperature T, to a non-superfluid phase which we might expect to have 

some analogies with the Kosterliz-Thonless transition. We shsll see, however, that 

the finite temperature behavior of anyonic systems is much more complicated. 

The most straightforward method of analyzing the finite temperature system 
is using a finite temperature generalization of the tadpole-improved perturbation 
analysis which we discussed for the zero temperature case in chapter 6. We shall see 
using this method that the massless mode does not survive to finite temperature 
and that, in fact, there is an exponentially small renormaliced Chern-Simons term 
and thus a mass for the “Goldstone” mode. This differs entirely from the naive 
expectations described above. Furthermore, when the anyons are charged, we 
found, at T = 0, that the two dimensional electromagnetic gauge field acquired 
a Chern-Simons term and a “Higgs” mass term (A,,A”). The Chern-Simons 
term survives the finite temperature analysis (though it’s coefficient shifts by an 
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exponentially small amount (at low temperature)) but the “Higgs” mass term is 

no longer present. This seems to imply that in the purely two dimensional system, 
there is no superconductivity at nonzero temperature. 

Our goal in this section is to first describe this perturbative analysis at nonzero 

temperature and to establish the results described above. We then discuss the 

physical interpretation of having a Chern-Simons term but no “Higgs” term in the 

electromagnetic action especially in light of the fact that the system is, in fact, three 
dimensional. The consequences of this result for High T, materials is discussed. We 

then discuss some nonperturbative approaches to the finite temperature problem. 

9.9. RENORMALIZATION OF THE CHERN-SIMONS TERM AT FINITE TEMPERA- 

TURE 

We begin by discussing the perturbative result. Let us consider neutral anyons. 

Recall from chapter 5 that the passage to finite temperature does not alter the fact 
that the condition for the massless mode in the current-current correlator is the 

vanishing of OR unless singularities are present in the even part of the vacuum 
polarization (II.) at low momentum. Since such singularities do generically occur 
at finite temperature we should see if they could significantly affect the result. 
Clearly a sufficiently singular II. could make the massless mode massive even if OR 
vanishes since, for example, a Higgs mass results simply from a singular vacuum 
polarization. Note, however, that if t?R # 0 as, we shall see, occurs in our case, 
there is no way that singular terms in II. can make the mode massless.. Thus, 
in order to check whether the massless mode persists at nonzero temperature we 
should first evaluate #R and determine whether it vanishes. We thus repeat the 
cshndation of p and R&d, which are now also function of the temperature, and 
check whether we still have &,& = y which would imply the vanishing of OR. 
We shall only calculate the one-loop contributions to these quantities (in tadpole- 
improved perturbation theory). Our proofs of the nonrenormalization theorem do 
not extend to the finite temperature case and it is nearly certain that the theorem 
fails to hold. We shall discuss the implications of this limitation to one loop later 
in this section. 

Technically, the standard procedure to pass to the finite temperature calcu- 

lation in Euclidean space involves the compactification of the (Euclidean) time 
direction into the range 0 <_ t 5 p = $ and the imposition of antiperiodic bound- 

ary conditions (in time) for fermions and periodic boundary conditions for bosons. 

For our calculation this implies replacing the integral over frequencies w with a 
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sum over discrete ‘Matsubara’ frequencies wt = %(I + a ), 1 being an integer. In 

particular we can evaluate the mean density po at finite temperature by using equa- 

tion (6.17) but, instead of integrating over w, we sum over the discrete frequencies. 
This results in the expression: 

PO = -$ Fdfim [(WI - +I( 4:l(r) + & b+( 4:1(l) - & )I (9.1) 

where 

A(l) = (w, - ipy + Ma(n) = (Id1 - i/L)2 + 2neE + 772 

The frequency sums C G(I) can be done exactly by evaluating contour integrals 
of the form 

where the integral is over a contour which surrounds the real axis. When evaluating 
po we get the following answers for the sums: 

yq&=-&f [tgh[$P - WI - t&(/J + WI] 

(w - iPI 
;7 A(l) =; [t!&P - WI + WI@ + M)l] 

(9.3) 

Inserting these results into the expression (9.1) for po we get the following expres- 
sion for the density at finite temperature: 

p-2 = $2 [tssl~(a+M(n))l+tgh[~(~--M(n))l] -+!$p-lml)]]} (9.4) 
n=O 

Note that in the limit /3 -+ cc this expression reduces to the zero temperature 

result given in equation (6.19). At nonzero temperature the density is no longer a 
step function as the chemical potential is varied. The steps are smoothed out as 
is shown for specific values of the parameters in Figure 7. This result is, of course 
well known from the theory of the Quantum Hall Effect. 
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We now compute the renormalized CS term at finite temperature. The simplest 

way to do this is to use eqn. (6.29) which is valid at finite temperature. Recall that 

the renormalized Chern-Simons term is proportional to d(p/8)/d(B). In the zero 

temperature case p was (piecewise) proportional to eB and thus the renormalized 
Chern-Simons term vanished. At finite temperature we see from eqn. (9.4) that 
this is no longer the case. In fact p/eT3 is a monotonic function of eB. The relation 

II,,dd = epo/B is thus never valid, and the renormalized CS term is nonzero for any 
finite temperature. In fact by differentiating eqn. (9.4) we find: 

eR(& T) = - e&S’ db’eB) d(eB) 
= -3g& [l~h2[~(P + M(n))1 - tsha[$ - WI] 

(9.5) 
where o = ez/4x. Note that the term inside the sum is positive for alI values of n 
as long as p is noneero. Thus OR is nonzero for any nonzero value of p. Note that 
it is not necessary to use eqn. (6.29) to evaluated the renormalized Chern-Simons 

term. An explicit calculation of &,dd is given in ref. [23]. 

It is important to emphasize that this result, namely the presence of a nonzero 

renormalized Chern-Simons term at finite temperature, has only been demon- 

strated in the one-loop approximation. Although it is difficult to imagine that 
higher order perturbative effects would force the mass of this mode to vanish, it 

is, in principle, possible. More reasonably, nonperturbative effects may generate a 

massless mode in the current-current correlation even at finite temperature. We 

shall discuss this issue further below. 

In order to obtain an estimate of the size of the renormalized Chern-Simons 

term and of the resulting mass of the “pseudo-Goldstone mode in a realistic system 

we evaluate OR in the low temperature limit. (The precise limit will be described 

below.) We shall specialize to the case of most interest for which the T=O, @=O 

Chern-Simons coefficient is an integer, N, i.e. for which N Landau levels are filled. 
We assume a density p of anyons. Keeping in mind the distinction between pr,hsa 

and po which was discussed in section 2, we then require a field eB=2ap/N. If we 
then assume that the temperature is sufficiently low so that ~(MN-MN-~)) >> 1 

(recall that M$ = 2NeX + m’) we can compute the sums in both eqn. (9.4) 
and eqn. (9.5) since only one term in each sum contributes significantly. We can 
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express the result in terms of the renormalized value of N, Nr.,=2x0R/e2 as 

N rcn = + (?& + &) erp (+N -Mm)) (9.6) 

In the non-relativistic limit p < < m2 this becomes 

N - 2=p ,=” - =P(2N - l)ezp 

We see that for integer N and for small temperature, the renormalized Chern- 

Simons term is exponentially suppressed compared to its unrenormalized value. 

The mass of the “pseudo-Goldstone” mode is given by: 

mpc = $ = (:)(%)‘(2N - l)erp 
c (9.8) 

where for II. we have used the estimate derived in ref. [15]. We can get a rough 
idea of the order of magnitude of this mass by putting in some possible numbers for 

the mass and density such as may occur in high Tc superconductors. Choosing the 

density p to be lO”cn-’ and the mass m to be the electron mass and a temperature 

7’ of lOOOK we find that mpc is approximately 5 x 10e6 ev. This corresponds to 
a distance scale of roughly 5 cm. This estimate is of course extremely crude since 

there are large uncertainties in the exponent. 

9.10. ANYONIC SUPERFLUIDITY AND SUPERCONDUCTIVITY AT FINITE TEM- 

PERATURE 

Since the results of the previous section differ from our expectations and ex- 
perience about superfluids and superconductors, we should scrutinize these results 

quite carefully. First note that in conventional superfluids the massless pole in 
the current-current correlation persists at finite temperature. This happens even 

in 2+1 dimensions in which case symmetry breaking cannot persist to finite tem- 
perature due to the Coleman-Mermin-Wagner theoremL6” since even there the 

massless mode remains. Thus the results of the previous section seem to imply 
that superfluidity is lost. 
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In order to analyze this matter further we first make a comment on the spec- 

trum of the zero temperature theory (of neutral anyons). Viewed perturbatively 
(via the “tadpoleimproved” perturbation theory of chapter 6) we have a massless 
statistical gauge field a,, together with a fermion field, in a magnetic field, at finite 
density, with full Landau levels leading to a gap in its spectrum. This fermion is 
‘charged’ (with a statistical charge) and thus still couples to the statistical photon. 
The resulting theory has, in the low momentum limit, similarities with Quantum 
Electrodynamics (QED) is 2+1 dimensions. In particular the self-energy of the 
fermion is infrared divergent and grows as the logarithm of the size of the system. 
Two fermions, as well as a fermion-hole pair have a logarithmic interaction at large 
distances. At exceedingly large distances, the separation energy of a fermion-hole 
pair is so large that it pays to create another pair across the Landau level gap so 
as to screen the charges. This screening of the charges is unusual since it occurs 

without the ‘photon’ acquiring even an electric mass as can be seen by the fact 
that two equally charged fermions would not be screened. The screening is thus a 

nonlinear nonperturbative’ phenomenon. A similar nonlinear phenomenon screens 
the charge of N anyons (where N = 2n6’/ ea is related to the Chern-Simons coef- 

ficient). Even though a priori a collection of N anyons will, perturbatively, have 

a divergent self-energy, there is a nonlinear mechanism whereby they can redis- 

tribute themselves among the Landau levels (since they have now increased the 

local mean magnetic field) and simply create a density perturbation. (See chapter 
7 for more discussion on this point.) Thus these fermions behave very much as 

do vortices in models such as the x-y model. This adds to the suspicion that the 

physics here should be similar to that in the x-y model in that the superfluidity 

should persist to finite temperature and eventually disappear due to a vortex pair 
unbinding transition. These ideas have been used quite widely in analyzing the 

finite temperature behavior of anyonic systems!z6’e4C’S’11 Yet vortices are somehow 

different. If we consider, for example, a theory of bosons with a hard core repulsion 
at finite density and low temperature, they do, of course, Bose condense and they 

do have a massless pole in the current-current correlator which persists at nonzero 
temperature. The long distance behavior of this theory is, however, very similar to 

that of an x-y model in that there are vortices with similar interactions. Thus in 

our theory, the lack of a massless pole in the current-current correlator indicates 
that this theory differs somewhat from the conventional theories of vortices. 

The case of charged anyons has the additional feature of the presence of a 

t By nonperturbative we mean that it cannot be seen in any finite order in perturbation 
theory 
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Chern-Simons term for the electromagnetic photon which is only slightly modified 

at nonzero temperature. Thus the Meissner effect which results from this term is 

present at nonzero temperature as well!“’ The conventional Meissner effect due to 

a Higgs effective lagrangian is not present since the photon is massless (although, 

at low temperature, this term still causes a large but finite energy penalty for the 

presence of a constant magnetic fields). There will be no dissipationless current 
flow but the resistance will be exceedingly small at low temperature. 

In summarizing this section we once again point out that since we have no 

control of nonperturbative effects, one cannot argue convincingly that superfluidity 
is lost at any finite temperature. What is clear, however, is that one of the main 

steps in the argument for superfluidity at zero temperature, namely the presence 

in the RPA approximation of a massless pole in the current-current correlation, is 
lost at finite temperature. 

10. Low ENERGY EFFECTIVE ACTION 

The low energy effective action determines the phenomenology of the anyonic 
superconductors. It is thus very important to determine and analyze this effective 
action if we are to confront the theory with experimental results. As discussed in 
the previous chapters, the essential picture that emerges from the various formula- 
tions of the model, is that of a gapless density wave coupled to electromagnetism. 
Hence, it is not surprising that the low energy effective action of the various ap- 
proaches to the problem are quite similar. Nevertheless, it turns out that there 
are several differences some of which lead to significant phenomenological differ- 
ences. In this chapter we shall first present the field theoretical derivation of the 
low energy effective action and we later compare it to the RPA calculation., We 
then discuss the implications on several experiments which have been suggested as 
tests for the hypothesis of anyonic superconductivity. 

The low energy effective action of a system of charged anyons was derived 

in chapter 5. For experimental applications we are, of course, interested in the 
Minkowski rather than the Euclidean effective action. For the finite density, zero 

temperature, non-relativistic case we can deduce from equation (5.12) the form of 

the effective lagrangian in Minkowski space. It is given by: 

L,ff(A,,rp) = -:(I + &I.)F,,,FpY - ~g’II&jF’j - i gZ6’hY’A,&A~ 
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+a (809 + CAo)’ - 4 V2(8iv + CA;)’ (10.1) 

+IZ(&~ + CAo)‘FO + b(&p + CAi)‘F’ 

where the parameters v, C, a and b are functions of the magnetic and electric even 
parts of the vacuum-polarization as follows: v is the velocity of the Goldstone mode 
of equation (5.9): v2 = (1 + &,/II,); C = @g/d-, and a = b = fix. 
‘F is the dual of F. As discussed in chapter 5 the “degeneracy” between a and 
b is in fact lifted by terms proportional to i II,ai(foi + gFoi)rjL(fj6 + gFjk) in 

equation (5.11). Recall that IIN is the zero momentum limit of the coefficient[“’ 

of w(*kikj + ki’kj) in the non-relativistic expression for IIij. In spite of the fact 
that this gauge and rotationally invariant term is higher in derivatives it conspires 

with the mixed CS term to give a contribution to the term whose coefficient is a 
in (10.1). Thus the corrected effective action is identical to equation (10.1) except 
that a and b are no longer equal. The calculation of a and bin terms of the various 
II’s is straightforward though tedious. The result is: 

a=g@[l+ $&I; b=g@ 

where DE = II. and DE = II. + &,. 

Equation (10.1) is a description of the low lying collective excitations of the 

anyonic system and it exhibits the Higgs mechanism in the Stuckelberg form. In 
the absence of an electromagnetic field it describes a “sound” wave. This sound 

wave turns into the longitudinal component of the massive photon when electro- 

magnetism is included. The %nyon? origin of this action appears via the P and 

T violating terms in the effective action. There are three such terms. The first is 

the induced Chern-Simons term for the photon, and the others are the terms in 
equation (10.1) which are proportional to a and b. If we set aside the F2 and the 
Chern-Simons terms then the current and the density which am generated by the 
Higgs terms (both the P, ‘2’ invariant and non-invariant terms) are given by: 

Ji /$f = -“2C(&P + C4) + 0~;j8j(&~ + CAo) - beij&(ajrp + CAj) 
8 

JO =!!G.fL = c(aop + cAo) + 4 d22jFij 
6-40 

The first term of the current is the standard London supercurrent and the&%& 
tional terms emerge from the P and T violating terms of the action!“] 
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The parameters of the Landau-Ginsburg effective action (10.1) can be deter- 

mined by evaluating lIE, lIB and IIN. These can be calculated, in principle, to any 

desired order in perturbation theory. Note, however that the nonrenormalization 

theorem does not apply to the even part of the vacuum polarization and thus the 

one loop calculation on which we shall base our discussion is only an approxima- 

tion. The values of these various II’s are evaluated in ref. [15]. Inserting their 

results into the expressions which appear after equation (10.1) gives 

IIB 
&@“5 C=&-eJ;;; 

b&j&e% 
(10.4) 

J;;; 

The effective action which is derived from the RPA analyses of Laughlin”’ and 

Chen et al”‘I has the same form as (10.1). However the coefficients deduced by 

Chen et al and by Halperin et alp’ differ somewhat from the ones which are derived 
from the field theoretic considerations above. We begin by discussing their results. 
The parameters of the Landau Ginzburg action as computed by these authors, to 
lowest order in $, are 

y2 _ 2vh2 
,a 

b=O 
(10.5) 

Halperin et al”” suggest that these parameters can be determined from physical 
arguments which are outlined below. 

(i) The velocity of sound is determined by the compressibility, namely, v2 = 

pv. Now the energy of an electron gas filling exactly N Landau levels is the 

same as that of gas of electrons without any magnetic field. The expression for 
the velocity in equation (10.5) is precisely the value for fermions with no magnetic 

field. This expression is only expected to be valid for large N. For small N the 
RPA is no longer a good approximation and we expect to find corrections to this 

expression. In particular when N -+ 0 which is the limit of free bosons we expect 

to get v2 = 0. 
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(ii) From the expression of the supercurrent (10.3) it is easy to see that the 

product C2ur is directly related to the penetration depth. Since the anyon gas 
exhibits perfect diamagnetism it is expected to obey the classic London formula 
for the response of the current to a slowly varying quasi-static gauge field: 

(10.6) 

Comparing this to the expression for C2vz in equation (10.5) we see that the results 
for the London current match those from our effective action with the coefficients 

given by (10.5). 

(iii) The ‘a’ term describes a P and T non-invariant interaction of the form 
p x B. It is thus related to the intrinsic magnetic moment of the anyon superfluid. 

In the approximation of a constant fictitious magnetic field the fermions are moving 

in Landau orbits. Since they have an electric charge, this motion produces a real 

magnetic field. Hence, when the spin of the fermions is ignored, the entire magnetic 

moment is due to their orbital motion. We thus expect that this magnetic moment 

should be proportional to the angular momentum per particle. In ref. [20] this 

intrinsic magnetic moment is calculated in the mean field approximation for n 

fermions in N exactly filled Landau levels. The result is found to be 

n2 nN --- 
2N 2 

(10.7) 

Transforming to the so called “anyon gauge” by multiplying the wave function by 
the phase factor 

IIij ‘;i:z:?; 1 

the magnetic moment per particle is found to be 

a=e(N-+) 

This result agrees with the result presented in equation (10.5) in the large N 
limit. It has the further advantage of being more accurate for smaller N since, for 
example, it vanishes for a gas of bosons (N = 1) where P and T violations are not 
expected. 
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(iv) Using physical arguments it is claimed in ref. [15] that the term propor- 

tional to b should vanish. This term is a .I x E interaction as can be seen from 
equation (10.1). Applying an electric field in the plane will cause a current which is 

also in the plane but which is perpendicular to the direction of the applied electric 

field. Since all the anyons have the same charge to mass ratio, it means that the 

electric field couples in fact to the current carried by the center of mass. The mo- 

tion of the center of mass is independent of inter-particle interaction. Thus, as for 
free particles, the transverse current should not exist. In ref. [78] this argument is 

dressed in the form of a general rule for determining effective actions. It is argued 

that in addition to preserving the symmetries of the underlying microscopic theory, 
the effective action has to obey the operator relations that exist in the theory. In 

the underlying Chern-Simons action the momentum density Toi is linearly related 
to the current. To; = mJi/e. Imposing this relation on the effective low energy 
action dictates the vanishing of the b term. 

Let us now compare the parameters of the effective action which follows from 
the field theoretical approach (equation (10.4) to the one that emerged from the 
above physical arguments. The most important difference is the fact that they 
imply that the b term vanishes, whereas in the field theoretical analysis it does 
not. This has a significant implication for the analysis of experimental tests of 
anyonic superconductors. We shall now discuss this point briefly. 

The main idea of the experimental tests of anyonic superconductivity is to 
look for P and T violating effects in high Z’, superconductors. The first experiment 
which was suggested as a test of P and T violating effects was muon spin relaxation 
Polarized positively charged muons are captured in the material and decay into 
positrons. The direction of the outgoing positron is correlated with the spin of the 
muon which precesses in response to the internal magnetic field. The results of this 

experiment set a limit on the strength of the internal magnetic field. They find 
that the field is smaller than 0.8 gauss. The theoretical prediction”” was that the 
field should be approximately 10 gauss. This experiment poses the most serious 
problem, at present, for a description of high T, materials in terms of anyons. One 
possible way out of this experimental result is to use a parity invariant anyonic 

model which has been proposed in refs. [42] and [82]. 

Another experiment was suggested by Wen and Zee!“’ It is the measurement of 

the rotation of the plane of polarization of linearly polarized light normally incident 

on the superconductor. Such an effect would be produced by the b term. It is here 
that the difference between the RPA and the field theoretical effective action is 
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crucial. According to the latter the effect should exist, whereas the former, at 
least in the form of an ideal anyon gas, excludes this possibility. There are, at this 
point, conflicting results from various experirnents!IO’*ll 

It has been suggested by Kitasawa”” that the seeming contradictions between 

the field theoretic results and the physical arguments given above can be reconciled. 
This requires a careful treatment of screening effects and separation of physically 
relevant length scales. He concludes that the theoretical magnetic moment pre- 
diction of ref. [ZO] was incorrect, while the b term generated optical rotation is a 
real effect. We rather suspect, however, that this is not the last word on anyonic 

superconductor effective actions! 

11. SUMMARY 

In this article we have reviewed the basic theory of anyonic superconductivity. 

The basic idea was to discuss a novel type of superconductivity which exists, a 

priori, in two spatial dimensions and which may lead to a better understanding of 

high T, superconductors which are layered two dimensional materials. 

Theoretically it seems quite certain that a noninteracting gas of electrically 

neutral anyons at zero temperature is a superfluid. In fact such a system has a 

gap in its single anyon spectrum together with a gapless mode. This gapless mode 

couples to the anyonic current and is thus similar to a Goldstone mode which 

occurs due to the symmetry breaking in conventional superfluids. The system is 

thus expected to exhibit all the conventional features of superfluidity including 
dissipationless flow in the presence of impurities and the presence of vortices. It 

seems unlikely that there is a local order parameter which signals the breaking of a 
symmetry in this system although such a nonlocal order parameter may exist. The 
situation at nonaero temperature is less clear. The perturbatively improved field 
theoretic mean field analysis predicts that there is no gapless mode at nonzero 
temperature. This differs from the usual situation with symmetry breaking in 
which the gapless mode persists at nonzero temperature. It may be that in a pure 
anyonic system superfluidity is lost at nonzero temperature (though the mass of 
the “nearly-gapless” mode is exceedingly small). Many authors, however, claim 
that this is not the case, and that at nonzero temperature the usual scenario (i.e. a 
two fluid model) occurs!*““‘*” Yet another finite temperature scenario is provided 

by Hetrick et al? 
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A gas of charged anyons is, at zero temperature, a superconductor. It has all 

the usual features of superconductivity including the Meissner effect, persistent 
currents and vortices. The Landau-Ginsburg effective action for an anyonic super- 

conductor is quite interesting. It contains all the features of the Landau-Ginsburg 

effective action for a usual superconductor including a “Higgs” mass term for the 

photon, but it also contains several extra terms. The most interesting of these is a 

“topological” (or Chern-Simons) mass for the photon. In fact the main unique fea- 
ture of an anyonic superconductor is that it’s ground state breaks parity and time 
reversal invariance. Several experiments have looked for this symmetry breaking 

but there is no conclusive experimental evidence yet. 

If anyons are responsible for high Tc superconductivity, it remains an open 
challenge to figure out why this is so. Although there are several approaches to high 
!Pc materials based on the Hubbard model”” which can possibly lead to anyonic 

quasiparticles, there is no compelling reason, nor any reasonably convincing model, 
which predicts their presence. 

Although much has been learned about anyons and anyonic superconductivity 
in the past few years, there remain many interesting unsolved problems and con- 
troversies in the subject. Many of these have been discussed in this review. The 
question of whether anyons are responsible for high Z’, superconductivity can, in 
the end, only be decided by experiments. 
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Figure Captions 

Fig 1: Diagramatic expansion for the electromagnetic photon propagator in 
terms of the current-current correlator K of the pure Chern-Simons theory. Elec- 
tromagnetic corrections to the vacuum polarization are not shown. 

Fig 2: Two representations of the Feynman diagrams for the Chern-Simons 

theory. 

Fig 3: Tadpole contributions to the fermion propagator. 5’~ represents the full 

fermion propagator. 

Fig 4: One loop diagram for the density po in tadpole-improved perturbation 

theory. 

Fig 5: The physical density JQ+, = p(p) - p(O) is plotted versus p2 x Big+) 
at fixed B. Here sign(p) is the sign of p. 

Fig 6: Diagramatic representation of the result that bepo/6Bi,, = IIodd(q = 0). 
Only the simplest class of diagrams are shown. 

Fig ‘7: Numerical results for the physical density as a function of /I for various 
values of the inverse temperature p. 
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